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ABSTRACT 

We define a "space-time" boundary (referring to space-time harmonic func- 

tions) to encompass random walks obtained from compactly supported dif- 

fuse measures on Euclidean space, and then prove that  in many cases, a 

qualitative analogue of the Ney-Spitzer theorem (1966) holds, namely that  

the space-time boundary admits a natural  identification with the convex 

hull of the suppor t  of the measure. This can also be interpreted as a gener- 

alization to the diffuse case of the weighted moment  mapping of algebraic 

geometry. In many more cases, a weaker analogue holds, identifying the 

faithful extreme space-time harmonic functions with the interior of the 

convex body. 

I n t r o d u c t i o n  

A well known theme in the theory of random walks (on discrete abelian groups) is 

the study of their harmonic functions. The space of suitably normalized harmonic 

functions forms a convex set; however, this is only a slice of a nmch larger and 

more useful space consisting of the space-time harmonic functions. This itself is 

only a subset (often open and dense) of a natural compact set, in fact, a Choquet 

simplex, consisting of space-time harmonic functions defined on a suitable space- 

time cone determined by an initial distribution. The extremal boundary of this 

Choquet simplex is a very interesting object. For example, if the random walk is 
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an iid with finite support on Z d, the extremal boundary is naturally homeomor- 

phic to the convex hull of the support,  and the natural  map implementing this is 

essentially the weighted moment map ([Od])--paradoxically, this set of extreme 

points of a convex set can be identified with the set of all points of a convex 

polytope, and the resulting facial structure can be exploited. 

Still in the case of an iid with finite support  on Z d, the harmonic functions 

that  are extremal can be identified with the boundary of a log-convex se t - - the  

set of nonnegative solutions to P(x) = 1 where x = exp X is in the positive 

orthant of Euclidean space, (Rd) ++ and P is the "real slice" of the Fourier 

transform of the measure, viewed as a Laurent polynomial in x. The remaining 

extremal space-time harmonic functions are also eigenvectors (for the multipli- 

cation operator) and can be identified with the boundary of the log-convex sets 

{x c (Rd) ++ such that  P(x) = ,k} where ,k varies over the half-open real in- 

terval [~0, c~), with A0 = inf{P(x)  such tha t ' x  C (Rd)++}. Finally, the set of 

extreme points of the whole space-time boundary (which will be defined below in 

detail) includes all these, together with their limit points. These turn out to be 

space-time harmonic functions defined on a proper space-time cone; moreover, 

there is a natural  identification of this set as the boundary of the convex hull 

of the support  of the original measure. In this context, there is a qualitative 

interpretation of the Ney-Spitzer theorem INS]. For each ,k > A0, consider the 

set of solutions to P(x) = A, and normalize in some way, so the volumes they 

enclose are more or less comparable as A --~ c~. Then after possible translation, 

these shells converge to the boundary of the convex hull of the support  of the 

original measure. This could have been deduced from the Ney-Spitzer theorem 

(which involved estimates of the distributions of high convolution powers of the 

measure) had there not been an initial distortion which had the effect of making 

the boundary of the convex polytope into a sphere. 

In any event, in the case of an iid # with finite support on Z d (with initial 

distribution a singleton, for example), there is a natural identification of the 

extremal space-time boundary with the convex hull of the support  of the measure. 

If we examine the mapping which implements the identification, we also see that  

it is precisely the weighted moment map of algebraic geometry, [GS], [A], [Od; 

Remark, p. 94]. It  also occurs in the study of an algebraic invariant for lattice 

polytopes, which in turn arose from at tempts  to understand an eventual positivity 

problem for products of polynomials, [H4] and [HS]; the latter class of problems 
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was naturally suggested by problems in the computation of the ordered K0 theory 

of actions of tori on certain C*-algebras. For extensions of this to compact Lie 

group actions, see [H1, H2, H5, H7, H9]. 

The portion of the space-time boundary corresponding to the interior of the 

convex body is described by a special case of the Legendre transform of convex 

analysis, [Ro; Theorem 26.5] (a version earlier than this but after [NS] is proved 

by Rothaus, [Rh]). In this class of examples, the Martin (exit) boundary consists 

of a very small cross-section, just the solutions to P(x) -- 1 (and this is insensitive 

to the choice of initial distribution). 

These results cited up to this point concern the discrete case, that  is, an lid 

with finite support. One approach adopted in [H4] and [H8], and extending 

considerably an idea in [DSW], is to identify the space-time boundary with posi- 

tive multiplicative functionals on an algebra naturally associated to the process. 

(From another point of view, this boundary is just the Choquet boundary on a 

dimension group attached to the random walk.) 

If instead, # is not supported on a lattice, e.g., if p is the restriction of Lebesgue 

measure to a compact convex body, it is not clear how to define the space-time 

boundary so that the analogous results hold, at least part of the time. There 

are several possible choices. One definition involving L °° functions gives a space 

occurring as the set of positive multiplicative functions on an enormous partially 

ordered algebra. This algebra is much too large to deal with, and the strongest 

possible generalization of the main result from the discrete case (that there is 

a natural homeomorphism to the convex hull of the support) fails except in 

degenerate cases, which amount to the original discrete form. A much smaller 

and more appropriate candidate arises from the use of continuous functions; the 

problem is that the algebra (whose positive multiplicative functionals correspond 

to the points of the space-time boundary) need not exist! However, in many 

reasonable cases, existence can be established. It turns out that when this algebra 

exists, there is a natural map from the space-time boundary to the convex hull 

of the support, but in general, it is not a homeomorphism. Again, in reasonable 

cases (Lebesgue measure on a polytope or a planar convex set, for example), the 

map is a homeomorphism and the weighted moment mapping theorem generalizes 

exactly. The map also exists and is a homeomorphism if K := cvx supp # is 

strictly convex (no line segments in the boundary) and p is absolutely continuous 

with respect to Lebesgue measure. 



110 D. HANDELMAN Isr. J. Math. 

If line segments are permitted in the boundary, then there are obstructions 

to the map being a homeomorphism, and moreover, this property is sensitive to 

slight deformations of K. An example is a one parameter family of measures in R 2 

whose convex supports resemble European hockey rinks. When the parameter 

is rational, the natural map is a homeomorphism, but when the parameter is 

irrational, the map is not, and in fact, the space-time boundary acquires "fins" 

(Example 6.3). 

There is a weaker version of this class of results, which deal only with the faith- 

ful pure space-time harmonic functions, those that come from the interior, and are 

mapped to the interior of K. Under quite weak conditions, the analogue of this 

holds even in the L ~ case mentioned above; it says that every faithful extremal 

space-time harmonic function can be identified with a point of the underlying 

Euclidean space, if the measure is merely absolutely continuous (Theorem 2.4). 

When the strong form of the result holds, that the relevant ordered algebra 

exists and the map is a homeomorphism, there is a type of "ergodic" theorem 

that  equates two norms, one involving space-time~ the other concerned with space 

alone (Theorem 5.1). 

Related to this is my original motivation for studying the problem. In the dis- 

crete case, the following problem arose from calculations of ordered equivariant 

K-theory. Decide, given a real polynomial (in several variables) f ,  and a polyno- 

mial with no negative coefficients P, whether there will exist an integer N such 

that the product pgf will itself have no negative coefficients. A complete solu- 

tion is given in [H3]. In the case of a diffuse measure # (which corresponds to the 

polynomial P),  the analogous question is, given a signed real measure u (possi- 

bly with L °~ or continuous Radon-Nikodym derivative with respect to #), decide 

whether there is an integer N such that the convolution product, #* # * . . .  * tt * v 

(with # appearing N times) is a measure, that is, nonnegative. In all situations, 

the space-time boundary gives useful (necessary) information about this, and in 

some cases (e.g., Proposition 5.2), it even gives sufficient conditions. However, 

the diffuse situation is far more complicated than the discrete case. 

ACKNOWLEDGEMENT: I would like to thank my colleagues David McDonald, 

Victor Zurkowski, and Wulf Rossmann, for numerous discussions and suggestions 

concerning the material presented here. 
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1. D e f i n i t i o n s  

There are various boundaries attached to random walks and a proliferation of 

definitions. The definitions we give below are motivated by the study of dimension 

groups, and correspond in the discrete case to the Choquet boundary of the 

dimension group associated to a finitely supported iid on Z d. We begin with a 

definition in the discrete state space setting, with an added parameter ,  an initial 

distribution. The point of view is that  of traces on AF C*-algebras, equivalently 

on their corresponding Bratteli  diagrams [EHS], [VK] . . . . .  

DEFINITION OF SPACE-TIME BOUNDARY, DISCRETE GROUP. Let X be a (dis- 

crete) group, and let {#1, #2,...} be a family of probability measures on X. Let 

#0 be an initial distribution on X,  i.e., a positive but not necessarily finite mea- 

sure thereon. The convolution of measures # and v will be denoted # ,  u. Define 

the s p a c e - t i m e  cone  determined by #o, #1 . . . .  , 

C = {(x,n)  e X x N such that  #~ * Pn--1 * ' " *  p0({X}) > 0}. 

As one would expect, this cone consists of the points (x, n) in X x N such that  X 

can be reached from a point in the support  of P0 at exactly t ime n. A s p a c e - t i m e  

h a r m o n i c  f u n c t i o n  on the cone C is a nonzero function f :C -~ R + satisfying 

the following property: 

that  is, 

f(x,n) = E f ( x + y , n +  1)p~+l({y}), 
yEX 

f ( - , n )  = f ( - , n  + 1)* P,~+I; 

"space-time" is often dropped, if no confusion will result between these and spa- 

tial ( that is, time-independent) harmonic functions defined only for true random 

walks. 

The set of space-time functions forms a convex cone, and is closed in the 

topology of pointwise convergence. The set of its extreme rays is the space -  

t i m e  b o u n d a r y  of the random walk associated to {P0, #1 , . . .} .  The bounded 

space-time harmonic functions form a face of the convex cone; if P0 happens 

to be the counting measure, then the set of extreme rays of bounded harmonic 

functions is the P o i s s o n  b o u n d a r y ,  here given in the topological setting, rather  

than the more usual measure-theoretic one. If supp #o is finite, we may normalize 
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harmonic functions, e.g., so that  2xesupp#o f(x, 0) : 1. In this case, the set of 

normalized space-time harmonic functions is a Choquet simplex (when equipped 

with the relative product topology), and the space-time boundary is the extremal 

boundary of this simplex. Of course, in this definition, only the support of #0 

matters,  not its actual distribution. 

In this context, the usual definition of space-time boundary has p = #1 = 

#2 . . . .  (iid), and #0 is either a point mass or # itself (both lead to the same 

definition). Even if # has the property that  the set of differences, supp p -  supp p, 

generates X as an abelian group (this is stronger than supp # itself generating 

X--cons ider  X = Z and supp # = {1 ) - -bu t  the two notions agree if zero belongs 

to supp #), the space-time boundary is sensitive to changes in #0. (An elementary 

iid example on Z 2 is given in [H4; Remark, pp. 46-47] wherein the space-time 

boundary is compact and connected if the support of #0 is a singleton, but neither 

compact nor connected for certain choices of #0 with two point support.)  

Note that  we implicitly assumed the group operation is abelian; with care, the 

definitions work in the noncommutative case as well. However, we will not be 

discussing random walks on nonabelian groups here. One could permit  the #~ to 

be positive measures (not necessarily finite); we could allow the group X to be 

replaced by a discrete state space, even varying in discrete t ime as well. However, 

these generalizations are not necessary for the purposes of this paper. 

At tempting to extend this definition directly to permit  diffuse measures on 

locally compact (abelian) groups runs into problems, because one would like the 

space-time boundary arising from an iid random walk with #0 a point mass to 

be compact,  rather than just an open subset of a compact set. The latter is 

what happens if one considers only harmonic functions on the space-time cone. 

Instead we have to deal with harmonic measures. The motivation for the following 

construction comes directly from the theory of dimension groups [EHS]. We only 

extract little bits of the theory for our purposes here. 

We temporari ly return to the discrete case. Let 

S ,  = supp #0 * #1 * .... * #n; 

n 
this is just the set of sums ~i=o supp #i. Since this is only to motivate the 

definition to be given shortly, we assume that  S~ is finite for all n. Form the 

finite dimensional vector spaces Rs~;  we note that  we can identify them with 

the space of signed measures on Sn, A~(Sn), and moreover, there are linear 
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m a p s ,  *Pn  : J ~ ( S n )  --4 ,]~(Sn..[_l) given by convolution with #n. We observe that  

each .M(Sn) is a partially ordered vector space (with positive cone given by the 

positive measures) and the maps #n are positive, i.e., they send positive measures 

to positive measures. Thus one may form the direct limit as partially ordered 

vector spaces, 

H = l imM(So)  *,1 M(S1)  *"~, M(S2)  *'% M(S3)  *,4 . . .  

The direct limit consists of pairs (u, k) where u is a signed measure supported on 

Sk, modulo the relation (u, k) - (u', k ~) if there exists l > k, k I such that  

#l  * " ' ' * # k + l  * b' : #l  * " ' ' * ] $ k ' + 1  * / J .  

Equivalence classes are denoted [u, k]. An element, u, of a partially ordered 

abelian group G is called an o r d e r  un i t  if for all g in G, there exists a positive 

integer N such that  g <_ Nu.  If supp #o is finite, it is immediate that  H admits  

an order unit, namely [P0, 0]. This follows from the simple observation that  if 

g = [,, k], there exists equivalent (u', n) such that  

&, = f dp (n) where / E L~(X,#('~)), 

so Iv[ _< M#(n) for some M, and u = [#0, 0] --- [~t (n), hi. 

The positive cone of H consists of equivalence classes that  contain a pair (u, k) 

where u is positive. Of course, dimension group afficionados will recognize this 

as a special case of the "real" version of dimension groups. A linear function 

~- : H ---* R is called a t r a c e  of H (so-called because of its close connection to traces 

on AF C*-algebras) if it is positive and nonzero (earlier work in dimension groups 

uses the terms "state" and "state space" for trace and trace space--however,  the 

former usages would certainly cause confusion). Since we have assumed supp #0 

is finite, H will have an order unit, and we may normalize traces, if necessary. 

Prom a trace on H,  we can construct a space-time harmonic function, via 

f ( x ,  n) = 7([~x, hi) 

where 5x is the point mass at x. Being a linear functional on H entails com- 

patibility conditions on the sequence of linear maps 7"n :M(Sn)  --* R obtained 

by composing r with the map .M(Sn) ---* H,  and these compatibili ty conditions 
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are precisely what is required in the definition of space-time harmonic. Con- 

versely, given a space-time harmonic fimction on the random walk with measures 

#0, #1, P2 , . . . ,  a unique trace on H can be constructed from it (this is a little 

more subtle, requiring the Riesz decomposition property),  and this trace in turn 

restricts to the original harmonic function. 

The upshot of this construction is that  at least in the discrete case, harmonic 

functions can be identified with certain positive linear functionals on a direct 

limit of ordered vector spaces. We can now give the appropriate definition of 

space-time harmonic measure and space-time boundary, in the general case. 

D E F I N I T I O N  OF SPACE-TIME BOUNDARIES,  GENERAL CASE. Here X is a locally 

compact (abelian) group, # is a positive measure on X, A4(X) is the algebra of 

signed measures on X, I}(X, #), and L~(X, p) are the usual real I] and L ~ spaces, 

and finally C(X, #) is the image of the space of bounded continuous real valued 

functions on X in L ~ ( X ,  #), that  is, the equivalence classes of continuous func- 

tions modulo those that  vanish on supp p. If the support of # is a subset Y of X,  

we may also use the notation, AJ(Y), I}(Y, #), L~(}q #), and C(Y, p), respectively. 

For the purposes of the operations that  we are going to perform on the elements 

of these spaces, we regard them all as spaces of signed measures; thus, I](X, p) 

consists of all signed measures that  are absolutely continuous with respect to p, 

L~(X, g) consists of signed measures that  have bounded (a.e.) Radon-Nikodym 

derivative with respect to to p, and C(X, p) consists of signed measures which 

have bounded Radon-Nikodym derivatives with respect to p that  are continuous 

on the support  of p. 

Now let {Pl, P2 . . . .  } be a sequence of probability measures on X,  and let P0 

be a positive measure. Define the convolution powers, p(n) = #0 * #i * " '" */z~, 

and set Zn = supp #(~). Of course 

n 

i=0 

and iftti are all equal, then Z ,  = ( n + l ) Z 0  (the set of all sums o f n + l  elements of 

Z0). We will define three ordered vector spaces, which in the iid case also happen 

to be algebras, whose sets of extremal traces will be candidates for the space- 

time boundary, and in each case, this agrees with the formulation in the discrete 

case. The first two, involving measurable or I} functions are much too massive 

to calculate, and the third, involving L ~ functions is much more appropriate. 
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It  turns out that  even in the iid situation, this is still too large, and there is a 

fourth candidate for the space-time boundary, arising from continuous functions. 

However, it is not always well-defined! It  is well-defined in many cases of interest, 

and it is in this setting that  the precise generalization of the finitely supported 

case can be proved. 

For a subset Z of X, and a measure # with support Y, there is a natural  

map Ad(Z) --+ Ad(Z + Y) given by u ~-* # • u. This is of course positive and 

linear. Moreover if Z comes with a measure #z, the map restricts to maps 

IJ(Z, #z )  ~ I](Y + Z, # • #z) and L~(Z, #z)  ~ L°°(Y + Z, # * #z )  (recall that  we 

regard I} and L °° as spaces of signed measures). In these cases, the underlying 

spaces (Z and Y + Z) containing the supports of the measures could be replaced 

by X, for simplicity. In particular, we obtain three direct limi' -'ector spaces: 

GM = lim M(Zo) *"~) M ( Z t )  *,2 Ad(Z2 *,3 . . .  

G~c = l i m  IJ(X,# (°)) *~,1 I}(X,#(1)) *us I}(X,#(2,) *,a> . . .  

G ~  = l i m  L~(X,p  (°)) * , ,  Loo(X,p(~)) *us L~(X,#(2)) * ,a  . . .  

In each case, we consider the collection of traces, that  is, the positive linear 

functionals, on the limit ordered vector space together with the zero functional. 

These are convex cones that  can be empty or enormous simplex spaces ([AE]), 

and the sets of extremal rays are candidates for the space-time boundary. The 

fourth candidate, when it is defined, is much more tractable, and considerably 

smaller. 

Suppose for each n, that  the range of C(X, #(n)) under convolution with Pn+l 

lies in the subspace of L ~ (X, #(n+l)), C(X, p(n+ 1)). This amounts to the following 

condition: For all positive measures u with du = f dp (~) where f is continuous on 

Zn, then we can write d(p * u) = g d(P (~+1)) where g : Z r ~ + l  ~ R + is continuous. 

This need not hold, even in the iid case (and with p0 a point mass). However, it 

does hold in a variety of situations. When it does hold, we may form the limit 

ordered vector space, 

Gcont = l imC(X,p(° ) )  * m  C(X,p(1)) *,2 C(X,p(2)) *,3 . . . .  

Then the space-time boundary of the random walk can be defined as the set of 

extremal rays of traces on Gcont, and it is in this context that  we show a version 

of the weighted moment  mapping theorem often holds for diffuse measures. 

Now we drop the pretense of generality, and make the following assumptions. 

First, we assume that  X is Euclidean space, i.e., a copy of R d, and the probability 
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measures, #i, are all equal to each other, say to it for i > 1 (so the random 

walk is an iid). We also assume that the initial distribution, #0, is either # 

itself or a point mass. We next assume that the support of # is compact. This 

includes the case of the original weighted moment mapping theorem, wherein 

# is finitely supported on a lattice. However, in full generality, and even with 

some nonsingularity assumptions, there is no guarantee that Gcont even exists 

(Example 6.1). We may make some simple observations. 

All of the ordered vector spaces, GM, G~c, G ~  are partially ordered commu- 

tative algebras with no zero divisors. Moreover, the extremal traces of G ~  are 

precisely the positive real algebra homomorphisms, and can be naturally identi- 

fied with the real maximal ideal space (equipped with the point-open, i.e., the 

weak, topology--this will be discussed in more detail below). 

We note the inclusions GM _~ G~¢ _D G ~  _D Gcont (when the last is defined), 

and the relative ordering on each one agrees with its intrinsic ordering. The 

multiplication operation on G ~  is simply [u, k][u', k'] = [u * u', k + k']. It is 

routine to verify that this is well-defined and associative, and obviously products 

of positive elements are still positive. Moreover, both G~¢ and G ~  are closed 

under this operation. The convolution of two nontrivial signed measures on 

Euclidean space (or more generally on a torsion free abelian group) is never zero, 

and it follows easily that no zero divisors exist in GM, hence in none of its 

subalgebras. 

We observed earlier that the element u = [#0, 0] is an order unit for G ~  and 

Gcont (when the latter exists). Thus no trace can kill u; so we may normalize 

the traces on G~  and Gcont so that ~-(u) = 1, and the normalized traces form a 

Choquet simplex. We also observe that u is the multiplicative identity of G ~ .  It 

follows from an elementary argument (in the probabilistic literature, dating back 

at least to Doob, Snell, and Williamson [DSW]; it appears in work of Gelfand and 

Naimark in the 1930's), that the extremal traces are precisely the multiplicative 

ones, see [H1; Theorem 1.1], [VK]. Since they are real-valued, we can identify 

them with the real maximal ideals of the algebra. 

All of this applies to Gcont as well, provided it is closed under the operation. 

We know of no instances where Gcont is defined, but the multiplication is not; 

nonetheless, for the multiplication to be defined there is a formally more stringent 

condition, which we will verify in a class of examples. We fix the definitions of 

G~(p) and Gcont(P) to be the respective limits wherein /to is the point mass 
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at the origin, and #1 = tt2 . . . . .  #. The set of extremal or pure traces are 

denoted Te (Goo (#)) and Te (Gcont (#)), respectively. These are two of the possible 

choices for the space-time boundary of the random walk associated to repeated 

convolution with #. In this paper, we are only able to obtain results about the 

latter. 

The algebras G ~  and Gac generally do not admit any order units at all, let 

alone admit  the multiplicative identity as an order unit. In these cases, the 

identification of extreme traces with multiplicative positive functionals may not 

hold. However, there are some situations wherein this occurs; then the trace 

space is a proper subset of that  of G ~ .  

In any event, we are now in a position to define a map F ~ sending the extremal 

(normalized) traces of G ~  to the convex hull of the support  of #, K = cvx supp #. 

Our assumption that  supp # is compact ensures that  K is compact.  When Gcont 

is defined, F °° restricts to a map, F:Te(Gcont) --~ K.  The extension of the 

weighted moment mapping theorem that  we are heading for, is that  under mild 

assumptions on #, Gcont = Gcont(/t) is defined, is a partially ordered algebra, and 

F is a homeomorphism. If # is finitely supported on a lattice, F "is" the weighted 

moment map. Moreover, it will be seen that  F ~ is an extension of the Legendre 

transform, in a sense that  will be made clear. 

Let u be a compactly supported signed measure on a d. Associate to it the 

real analytic function, P~ : R  d --* R,  defined via 

P.(r) = fr¢~ exp(r • w) dr(w). 

Of course, this is a real slice of the Fourier transform of v (sometimes called a 

Laplace transform, but the latter usually refers to integrals over proper cones in 

Rd), and so P~P~, = P...,. We note that  if v is nontrivial and positive, then P~ 

vanishes nowhere, and is positive as a function; in particular, this applies to P . .  

Let A ( R  a) denote the algebra of bounded real analytic functions on R d. There 

is a natural  map )c. : G ~  ~ A ( R  d) defined by 

P,(r) 
(F)  k] (r)  - 

The convolution formula is all that  is needed to show that  ~ ,  is well-defined, 

and an algebra homomorphism that  preserves the identity element. Moreover, 

positive elements of G ~  are sent to strictly positive functions of A = A(Ra) .  
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The kernel of $-, is trivial. It is frequently convenient to work with elements of 

.4 of the form P,,/P~ rather than the original element [u, k] of Goo. 

We notice that 
OPt, P 

- -  JK Wi exp ( r .  w) dp(w). 
Oxi 

Obviously, the (signed) measure given by du(w) = wi d# lies in C ( R  d, p), so that  
op_%/p the element of A ( R  d) given as o~ / , belongs to the image of .T,. This finally 

permits us to define F ~ .  Let r be an extremal trace on Goo, normalized so that  

r([#0, 0]) = 1; we also think of r as being defined on elements in the image of 

.T~. Set 

C~(r ) = (r (OP, /p  ~ t r a P , / p  ~ r (OP, /p  ~ R~" 
0X 1 / /I j ,  \ ~ X  2 / / z j , . . ' ,  ~OX d ~  #]] E 

We check that  the range of F ~ lies in K, the convex hull of the support of p. 

The natural map, L°°(ad, #) ~ Goo (at the first level of the direct limit) is 

obviously order preserving, and sends # to the identity element, [p, 1] = [#0, 0], 

assuming we fix P0 to be the point mass at the origin. It follows easily that if 

du = f d# where f is essentially bounded, then Ir([u, 1])] < ]]fU~. Let u = (u(i)) 
be an arbitrary point in R d, and set f (x l  . . . . .  Xd) = ~-~i u(i)x~ and define v via 

du = fdp .  Thus ]r([u, 1])] < max{Iu,  w] such that w G K}. By shifting K if 

necessary, and exploiting its convexity and compactness, we can find a collection 

of vectors {u} such that K = { w e R  d ] u . w < m a x { u . w ] w • K } } .  For any 

one of these vectors u we calculate, 

F°°(-r)l 

d 

= Ir([u, 1])1 

_< m a x { u ,  w I w • K} . 

Allowing u to vary over the prescribed set, we deduce that F°°(r)  lies in K. 

Of course, when the set of extremal traces is equipped with the natural point- 

open (weak) topology, poo is continuous. 

We resurface to give some examples of extremal traces. For every point r 

in R e, the map, [u, k] ~-~ P.(r)/P2(r) is obviously multiplicative, as it factors 
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th rough  the point  evaluation map A ( R  d) -+ R,  sending a real analyt ic  function 

to its value at r. If u is a positive measure, [u,k] is sent to a positive (not 

just nonnegative) real number;  in particular,  this is a trace on Goo, denoted 

r,.; this is a p o i n t  e v a l u a t i o n  t r a c e .  In particular, when r = 0, the effect 

of the point evaluation trace is to send the signed measure to its barycentre,  

normalized for the fact tha t  the measure lives on kI(, ra ther  than  K.  We have 

a map  R d ~ / (  given by 7' H F~(r~) .  It  is easy to verify tha t  this map has 

image in the interior of I ( ,  I n t ( K ) ,  and is just 7" H (VlnP t , ) ( r ) .  This is an 

example of the Legendre t ransform of convex analysis. We observe that  point 

evaluation traces are examples of faithfM traces (a trace r on a partially ordered 

vector space, G, is f a i t h f u l  if k e r r  n G + = {0}). 

A theorem, due to Rothaus  [Rh], asserts that  with the appropria te  conditions 

on the measure p, the map V l n P ,  : I n t ( K )  -~ R d is a homeomorphisnl;  this is 

extended in the book by Rockafeller [Ro; Theorem 26.1]. Even if V l n  P ,  is a 

homeomorphism,  it does not follow that  the restriction of P ~ to the pure faithflfl 

traces is one to one (Example 2.5). 

In the case tha t  p is finitely supported on the lattice in Z (t, we can recover 

the weighted moment  map of algebraic geometry. When  # has finite suppor t  in 

a lattice, we can regard P ,  as polynomials in exponentials; thus, identifying the 

monomial  x ~ with e I . . . . .  (for x in R d having strictly positive coordinates),  the 

range of ~c  will consist of certain rational functions. In particular,  P ,  = ~ )~,,x w 

(where ~,,, = tt({w})), and F°°( r )  = ~ s , p p #  kwr(x"/Pt,)w, and restricted to 

point evaluations at s = exp(r)  (a strictly positive d-tuple), the map is s 

)~(s~/P~(s))w, which is the weighted moment  map appearing in [Od; p. 94]. 

See also [H4], [H6; pp. 58-61], and [H8]. 

In this case, the extremal traces consist of actual (space-tin,e) harmonic func- 

tions. If instead the measure is diffuse, not all traces come from functions (con- 

tinuous or otherwise) on subsets of R d x N.  Instead, they come fl'om measures. 

Explicitly, restrict r to the image of the first level of L~(R  a, #); this defines a 

positive linear functional thereon; if instead, Gcont(p  ) is defined, we obtain a 

positive linear flmctional on C(K), hence a measure on K. These are not all ob- 

tainable from functions. Instead the compatibi l i ty conditions inherent in traces 

on the limit serve to define (space-time) harmonic measures. 

In the next section ("Faithful traces"),  we shall show that  raider fairly weak 

conditions, the faithful pure traces on Goo(p,) are all point evaluations, and the 
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same conclusions apply with Gcont(tt) when it exists. This may be viewed as a 

weak generalization of the result in the finitely supported case, corresponding 

to the interior. (With absolutely no conditions on p, this fails, Example 2.5.) 

The following section deals with sufficient conditions in order that  Gcont(#)  ex- 

ist; the case of least difficulty occurs when K = cvx supp # is strictly convex; 

more general results are also obtained. The section, "Perfidious traces", gives 

conditions under which the precise analogue of the weighted moment  mapping 

theorem holds, namely that  Gcont(tt  ) exist and F :Te(Gcont(#)) --* K be a home- 

omorphism. For example, this occurs if p is absolutely continuous and K is 

strictly convex, or if K is a polytope and # is absolutely continuous with Radon-  

Nikodym derivative h:K ~ R that  is continuous and does not vanish at any 

vertex. 

Other results, also allowing higher dimensional faces in the boundary, are ob- 

tained; however, these are not as strong. The fifth section discusses a consequence 

of F being a homeomorphism, specifically that  the point evaluation traces are 

dense in the pure trace space; this is equivalent to a condition resembling the 

ergodic theorem. Section 6 contains a couple of examples, together with a general 

result on planar convex sets. 

2. F a i t h f u l  t r a c e s  

In this section, we show that  if # is a compactly supported (Borel) probability 

measure on R d that  is not singular, then every faithful pure trace on G ~ ( # )  is 

a point evaluation. By "not singular", we mean that  the measure has a nonzero 

absolutely continuous part.  In addition, if Gcont(#) exists (and # still satisfies 

the other assumptions), all pure faithful traces on Gcont(P ) are also just point 

evaluations. In particular, in the topology of pointwise convergence, the set of 

faithful pure traces is naturally homeomorphic to R d, and to I n t ( K ) ,  the latter 

by means of the Legendre transformation. On the other hand, it is quite easy 

to construct singular measures p for which K contains a d-ball, for which the 

point evaluations do not exhaust the faithful pure traces on Gcont(P) and G ~  (p), 

Example 2.5. 

Recall that  a faithful pure trace on G = G~(#) (or G = Gcont (~t)) is a positive, 

multiplicative homomorphism, v : G  --* R such that  r(g)  > 0 for all g in G +. In 

this case, G has been identified with a subalgebra of A(Rd),  and so has no 

divisors of zero. Set YI = G + \  {0} (if we must specify that  G = Gcont, then the 
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corresponding set of nonzero positive elements will be denoted Ilc). Then II is 

multiplicatively closed (that is, a product of any two elements of II belongs to II), 

and we may form the commutative algebra G[II-1], obtained by inverting every 

element of II. (This is "localization" from elementary commutative algebra.) We 

may impose a partial ordering on G[H-1], by declaring a fraction ab -1 >_ 0 for a 

in G and b in II if there exists c in II such that ac E G +. Since ab -1 = (ac)(bc) -1,  

it follows that G[I1-1] is a partially ordered algebra with this ordering. 

Unfortunately, 1 = [#0, 0] is not an order unit for G[II-I]. However, we are 

really only interested in the multiplicative positive homomorphisms on G[YI-1]. 

We first observe that every faithful pure trace on G extends uniquely to a 

multiplicative positive homomorphism on G[H-1], via ~(ab-1)  = ~(a) (the point 

being that r(b) > 0). The next step is to show that every positive multiplicative 

linear functional on G[I-1-1] is of the form ab -1 H F , (a ) ( ro ) / iF , (b ) ( ro )  for some 

r0 in R d (see equation (F) of section 1 for the definition of $'). 

L~ (R d~ consisting of all signed To this end, we define the algebra, £ = cct~ J, 

(Borel) measures v with compact support in a d that are absolutely continuous 

with respect to A (Lebesgue measure) with bounded Radon-Nikodym deriva- 

tive. Multiplication is by convolution. With the natural ordering (£+ consisting 

of nonnegative measures), £ is a partially ordered commutative algebra. Let 

H~  denote £+\0 ,  and form £[II~1], the localized algebra. As with G[H-1], 

this is a partially ordered algebra. Define the algebra £1a obtained from the 

signed measures with compact support that are absolutely continuous with re- 

spect to to Lebesgue measure; define as well II1 : =  £1ct \ {0},  and the localiza- 

tion, £clct[IIll]. We shall show that there is a natural identification of G[I1-1] 
with £[II~ 1] and 1 -1 ~cct[H1 ] in such a way that their orderings coincide. Then we 

show that every positive multiplicative linear functional on £[H~ 1] arises from a 

point evaluation (in the appropriate sense). 

Let .Au(l:t d) denote the algebra of real analytic functions on Rd; obviously, 

A ( R  d) is a subalgebra (with respect to pointwise multiplication). For compactly 

supported signed measures v, recall that the assignment v ~-* P~ (where P~ = 

fRd exp(r • w) dr(w)), is multiplicative (with respect to to convolution). Since 

this map sends H1 to strictly positive functions in J[u(Rd), it extends to an 

algebra embedding, t -1 ~:cct[I'i1 ] ---* ¢~u(P~d). Moreover, the image of G under 9rp is 

obviously contained in the image of 1 -1 £cct[l'I 1 ], and thus $'~ extends to an algebra 

embedding G[I1-1] --* .Au(Ra), whose image is contained in that of £ [ I I2] .  It is 
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clear that the orderings and the multiplications coincide. It remains to show the 

image of G[H -1] is all of 1 -1 . £cct[II 1 ], we do this by showing the former contains 

Z:[H2] , and Z:[H2] contains 1 -1 Z:cct[H 1 ]. Of course, it is at this point that we 

must hypothesize something about it. 

LEMMA 2.1: Suppose that it is a compactly supported probability measure on 

R d that is not singular with respect to Lebesgue measure. Setting G = Goo(p), 

we have G[H -1] £[II21 1 - 1  = = £¢~t[H1 ]. IfG~ont(it) exists, then a~ont(p)[n2 ~] = 
1 - 1  £~ t  [H1 ]. 

Proof: For any compactly supported probability measure u, we define 

S,  = Goo(u)[II(u)-l]; for C a compact convex subset (containing a d-ball) of 

R d, let Ac denote the restriction of Lebesgue measure to C. We first show that 

Sac = Sa,c for all t. 

We may assume that the origin lies in the interior of C. For any integer k > t, 

we form A(~ ), the k-fold convolution of Ac with itself. It is absolutely continuous 

with respect to Akc, say with Radon-Nikodym derivative h; in fact, h:kC ~ R + 

is continuous, and its zero set is contained in the boundary of kC. Now t < k, 

so there exists e > 0 such that tC C_ h-l([c,  co]). Hence Ate -< ["c1 ~'(k), SO that the 

Radon-Nikodym derivative of the former with respect to the latter is bounded. 

Thus Pa~c/P~c : .7:'at late, k] is the image of an element of G ~  (Ac). Hence Ate 

belongs to Sac. It follows immediately that any signed measure u in £°°(tC, Ate) 

belongs to Sac. Since we can obviously replace t by 1/k and k by 1/c, the reverse 

inclusion follows. 

In fact, the argument of the preceding paragraph shows that if pi are positive 

measures and #1 _< M#~ k) for some positive integer k and positive real number 

M, then St1 C_ St2. 

Now decompose # : #~ + #ac into its singular and absolutely continuous parts; 

the hypothesis is that the latter is not zero. Let K = cvx supp #. Write d#ac = 

j (3) hadA(g 3), we find h3 is continuous. So h~[e,  oo] hdAK. On writing a#a¢ = 

contains an open set for some e > 0, and therefore contains a closed d-ball C. 
1. (3) Thus Ac _< 7 ~ ¢ ,  and it follows that St~ ¢ C_ Sac; the reverse inclusion follows 

from p ~  < MA (re) for some positive t and M, and Sac = Sa~c. 

We also have that p ~  < p, so that S~,~o C_ S t .  Finally, we notice that #' = 

# * # ~  is absolutely continuous, and thus S t, = Sac. Any element of S ,  can be 

written as  (121)(122) - 1  = (b, • pac) (b '2  • p a c )  - 1  (where u2 is positive), and we see 
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both numerator and denominator are absolutely continuous (and have compact 

support, are bounded, etc.), so belong to SAc for ally closed d-ball C. 

The upshot is that Sp = Sac for any closed d-ball C. We now show £ [H~ 1] C_ 

SAc, which will complete the proof that £[Iljo 1] = G~[II-1].  For L, a compactly 

supported bounded signed measure, choose a d-ball C such that Iv] _< MAc. By 

translation, we may assume the origin is contained in the interior of C, so that 

A (2) _< A2c and Ac _< 2)~2c. Then P~ = (P,,/Pac)Pac. However, 

p2ac ( Pac "~-1 
P;~c - Pa~c \ P~2c. ] 

expresses Pac in the form ab -1 where each of a and b are in the image of Sac, 
so Pac belongs to L;[II2ol], and P~,/Pac is in the image of Goo(Ac). This gives 

an expression for v as a product of elements of SAc, so L;[II~o 1] C_ Sac. and thus 

equality holds. 

To see that 1 -1 Coot[Hi ] c_ c[II2] (the reverse inclusion is trivial), just observe 

that if u is absolutely continuous with respect to to p with support contained in a 

ball C, then u* Ac has bounded Radon-Nikodym derivative with respect to A2c, 

so that P ,  = (P,,.:~c/P~2c)(P~c/Pa2c) -1, which shows u belongs to L;[H2]. 

Finally, suppose Gcont(#) exists. Observe that if u is a finite signed mea- 

sure on R d with compact support, then u • Ac is absolutely continuous with 

respect to Lebesgue measure, and u * Ac * Ac has continuous derivative, with 

compact support. This shows glCt C Gcont(p)[H/1], which is enough to obtain 

Ccont(~t)[Hc 1] = f~clct[lqtll]. I 

Now we have to find the positive and lnultiplicative linear flmctionals on £~t-  

It presumably is well known that they are all of the form 

%: v ~-~ f exp(r • w) d~(w) = P~(r) for some r in R a , 
JR d 

but I have not been able to find a reference. It is of course standard that  the 

multiplicative functionals on the full convolution algebra IJ (R a) are of this form 

(with r in ~/-Z-i-Ra), but its proof has to be adapted nontrivially. One of the 

problems is that % is not continuous with respect to to the (global) I} norm, 

except when r is the origin. 

To get around this, let CN denote the closed ball of radius N centred at 

the origin, and write £1ct = UI}(CN, AICN) (note the unnormalized A[CN, not 
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1 ACN ). Let "~ be a multiplicative positive linear functional o n  £ c c t ,  and denote its 

restriction to IJ(CN, AICN ), ~N. Then the multiplicative property is lost, but it 

is still a positive linear functional on a bona fide I]-space. The following general 

and elementary proof of automatic continuity for positive linear functionals on 

ordered Banach spaces was found by George Elliott, after I had found a very 

labourious one in the case of I]-spaces. 

PROPOSITION 2.2 (Elliott): Let B be a partially ordered (real) Banach space 

with the property that there exists positive real M such that for all b in B, there 

exists b' in B + satisfying b <_ b' and Hb']] _< MI]b]]. Then any positive linear 

functional on B is continuous. In particular, this applies if B is an ]~-space. 

Proo~ If the positive linear functional a were not continuous, there would exist 

bi in the unit sphere of B such that the real numbers, ai = a(bi), are positive, 

increasing and unbounded. By removing enough of them, we may also assume 

that  ~ 1/a~ converges. By hypothesis, there exist b~ in B + such that bi < b~ and 

I]b~[[ < M. Set 
1 bt" 

C i =  - -  i~ 

n then Ilcill < M/a i ,  and thus {~i=1 ci} converges to an element c of B +. We 
7l 

observe that for all n, c _> ~ i=1  ci. Hence 

> = >_ 
O~ i OLi 

i----1 i----1 i----1 

- n .  

Since this is true for all n, we arrive at a contradiction. 

If B is an I]-space, we may set b ~ = Ibl, and then the hypotheses will be satisfied 

with M = 1. | 

PROPOSITION 2.3: Every multiplicative positive linear functional o n  ~clct is given 

by 
f 

H [ exp(r ,  w) d/2(w) /2 
JR d 

for some r in R d. 

Proo£" We adapt the standard proof, given in [Ru; p. 207], of the corresponding 

result (with purely imaginary r) for the full I] convolution algebra. For this proof, 

it is convenient to drop our convention that elements of I] spaces be regarded as 

absolutely continuous measures, and instead revert to the usual formulation as 
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spaces of functions. Let 7 be the multiplicative positive functional on £~ct, and 

denote its restriction to IJ(CN), 7N. By Proposition 2.2, each 7N is continuous, 

so there exists unique/3N in Lc~(CN) such that 7 ( f )  = fc~ f(W)/3N(W) dA(w) for 

all essentially bounded f supported in CN. Compatibility of the linear function- 

als together with uniqueness of each of the ¢~g ensures that /3N, ICN = /3N (a.e.) 

if N '  > N, and we may define (a.e) a funct ion/3:R d ~ R via/3[CN = /3. (Natu- 

rally, /3 is almost never bounded, although each of the /3N'S is.) It is immediate 

that ~ is measurable, and for all functions f " 1 I n  ~cct, 7 ( f )  = fCy f(W)/3(W) dA(w) 

for all sufficiently large N. Suppose f and g are supported in CN, so their con- 

volution product, f * g is supported in C2N. For y in CN, define fy with support 

in C2N via fu(w) = f (w - y). Now 

= JRf.(f * g)(w)/3(w)dA(w) = ac f ( f  * g)(w)~2N(W)dA(w) 7(f  g) 
2 N  

Thus, 

N J(~'N 

Uniqueness of the representing measure ~N ensures that 7(f)~N(Y) = 7(f~) 

(a.e. in y). If we choose f >__ 0 but not equal tozero ,  then 7 ( f )  ¢ 0 (since 7 is 

not identically zero, and positivity of 7 entails positivity a.e. of the representing 

measure/3N, hence of/3). Since the equation is true for all N and all positive f 

in £1¢t, we have ~(y) = 7(fy)/7(f).  We may replace y by w + y  for any w in R d, 

and so obtain 

/3(w + y) - 7(fw+y) _ 7((f~o)y) _ 7((:~)/3(y)) _/3(w)/3(y). 
7 ( f )  7 ( f )  7 ( f )  

Since/3 is measurable, the functional equation/3(w + y) =/3(w)/3(y) (a.e.) forces 

fl(w) = exp(r - w) for some complex d-tuple r. However, since 7 is real valued, 

so must/3 be and it follows that r is real. | 
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THEOREM 2.4: Let # be a compactly supported measure on R d that is not 

singular with respect to Lebesgue measure. Then every faithful pure trace r on 

each of Gac(#), G~(#) ,  and (if it exists) Gcont(#) is a point evaluation; that is, 

there exists r in R d such that the trace is given by 

r([u,k]) = fRd exp(r ,  w) du(w) 

( fR~ exp(r ,  w) d#(w)) k" 

_ z : c ~ t [ n  1 ] ,  s o  Proof: We note that Go~(#) C G~¢(#) C 1 -1 

Coo(~)[n2] = aa~(~)[H2], 

and this equals 1 -1 t:¢c t [H 1 ]. Hence every faithful pure trace on any of the three (or 

two) algebras extends uniquely to a multiplicative and positive linear functional 
1 --1 £:¢¢t, it is still a multiplicative and positive on gcct[II 1 ]. Restricting this to 1 

linear functional, and so is of the form given in Proposition 2.3. Moreover, such 

homomorphisms are strictly positive on positive measures, and are multiplicative, 

so extend uniquely to the algebra obtained by inverting the nonzero positive 

elements, i.e., ~c lc t [Hl l ] .  Uniqueness of the extension yields the result. | 

Example 2.5: We exhibit a very simple class of examples to show that the con- 

clusion of Theorem 2.4 can fail if # is purely singular. (Notice that  if some 

convolution power of tt is not singular, then Theorem 2.4 still applies.) Let # 

be an atomic measure with finite support, S, in R d. Then Gcont(#) is defined 

and equals G~  (#); moreover, by cutting down to an affine subspace if necessary, 

we may assume cvx S contains a d-ball. If S is contained in the canonical copy 

of of Z d in R d, or more generally, if the subgroup of p d generated by the set 

of differences S - S = { s - s' I s, s' E S} is discrete (e.g., if S C_ Qd), then the 

point evaluations from R d exhaust the faithful pure traces on Gcont(#), and the 

theorem in the finitely supported case applies. However, if this subgroup is not 

discrete, then there exist faithful pure traces other than point evaluations, arising 

from a copy of a larger real vector space. 

To illustrate this phenomenon, let d = 1 and S = {0, 1, Vr2}; suppose the 

measure # assigns equal mass to these three points (all that  is important is 

that it assign some to each). Paralleling the development in [H4], Gcont(#) 

can be regarded as a ring of certain rational functions in the variables, x and 

x v~ (replacing expr  and exp(v/2r)). In particular, Gcont(#) is the algebra 

l:t[(1 + x + xV~) -1, x(1 + x + xV~) -1, xV~(1 + x + xV~)-l], with positive cone 
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generated additively and multiplicatively by the generators. Now the pure traces 

arising as point valuations from R,  send x to t E R + \  {0} and x ~/~ to t v~. How- 

ever, {1, V~} is linearly independent over the rational numbers, so {x,x v~} is 

algebraically independent (over the reals). In particular, we can send x and x v~ 

to any two positive numbers we wish, and still obtain a faithful pure trace. The 

set of faithful pure traces contains a copy of R 2 (via its exponential, the positive 

quadrant),  and these constitute all of the faithful pure traces. There is a natural 

isomorphism between Gcont(#) and Rp of [H4; Example 1A]. The same process 

will work for any finite set S, to give an isomorphism between Gcont(/-t) and 

some algebra of the form Rp, whose pure faithful traces have been completely 

analyzed. 

As a minor variation on this example, let # be an atomic probability measure 

with infinitely many points in its support, S. For instance 

S = {an}heN U {0} C_ [0, 1]. 

Then if {an} is rationally linearly independent, there are faithful pure traces 

given by sending exp(anr) to completely arbitrary positive real numbers, zn, 

respectively, subject to a normalization condition imposed by convergence of 

#({an}). The upshot is a cone of faithful pure traces generating a weighted 11 

space. II 

3. E x i s t e n c e  r e s u l t s  for Gcont(#) 

Unless tt is atomic, F ~ :Te(G~(p) )  ~ K is not a homeomorphism, as C(K) is 

separable; so G~(#) is too large. Thus we work with the much smaller algebra, 

Gcont(P). A problem is that for some choices of p, Gcont(#) need not exist, 

Example 6.1. In this section, we show in particular, that if K = cvx supp# is 

strictly convex (i.e., has no line segments in its boundary), and # is otherwise 

(almost) unencumbered, then Gcont(#) exists, and is a partially ordered algebra 

(the latter is crucial when considering its extremal traces). We also obtain some 

existence results when higher dimensional faces occur in K,  but these are far 

more difficult and technical. 

Certainly, Gcont (#) as defined in the introduction exists if there exists an integer 

n such that for all m ~ n, whenever h:mK ~ R is continuous and du = h dp 
determines u, then the function h':(m+l)K ~ R defined by d(u.#) = h' d# (re+l) 
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is continuous. This  says s imply tha t  the m a p  

C ( m K ,  p(m)) --+ L~((m + 1)K, #(m+,))  

given by convolut ion with # has range in C((m + 1)K, #(m+l)).  (Recall our  con- 

vention tha t  C(Y, v) consists of the signed measures  on Y absolutely continuous 

with respect  to v whose R a d o n - N i k o d y m  derivatives are continuous, and two 

continuous functions are equivalent if the zero set of their  difference has full mea-  

sure with respect  to p.) In fact, this is a bit s t ronger  than  is necessary for the 

direct l imit to be defined, since telescoping is permi t ted .  In order for it to be 

a par t ia l ly  ordered algebra,  the following condition is sufficient. If  h : m K  --~ R 

and k :m~K -~ R are continuous posit ive functions (with m _> n) and ~, and 

are the corresponding measures,  then 

(3.1) d(____~ * ~)  : (m + m ' ) K  --* R 
d#(m+m') 

is continuous. (On the face of it, this should have something  to do with  the work 

of Guivarc 'h  [Gu]; exact ly  what  is unclear.) 

A proper  subset  F of a compac t  convex set K C a d is called a f a c e  of K if 

for all a in the open interval (0, 1) and all elements v and w of K ,  a v  + (1 - a)w 

belongs to F if and only if each of v and w do. A point  v of K is e x t r e m e  if 

the set {v} is a face of K .  A face F of K is e x p o s e d  by u in a d (or a linear 

functional on R d) if F = { v E K I u .  v = maxwcK u" w}.  An ex t reme point  

is e x p o s e d  if the singleton set it const i tutes  is exposed as a face. A compac t  

convex set is s t r i c t l y  c o n v e x  if all faces are singletons, or wha t  amounts  to the 

same thing (at  least in Rd) ,  the boundary  contains no line segments.  I f  K is 

s tr ict ly convex, all of its boundary  points are exposed [Va; Theorem 7.7, p. 94]. 

A compac t  convex subset  of R d is called a c o n v e x  b o d y  if it contains a d-ball. 

LEMMA 3.1: Let K be a compact convex body in R d with exposed point v. 

Let K1 and K2 be convex bodies in a d SUCh that K1 + K2 = K.  Let vi be 

points of Ki such that v = Vl + v2. Let Pl be probability .measures on Ki with 

cvx  supp #i = Ki, and set # = #1 *#2. Suppose that ~i are finite signed measures 

on K~, with drh = hidpi, where each hi :Ki --* R is continuous. Then 

(d(~l * ~ 2 ) / d # ) ( v ) = h l ( v l ) h 2 ( v 2 ) .  
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Let { zj } be a sequence of points of K converging to v, with the property tha t  # 

does not vanish on any neighbourhood of each zj. Then 

li~ ( d(~ *_ ~ ) )  (zj) = h~(v~)h2(v2). 
\ dp 

Proo~ We first observe tha t  the vi exist and are unique, and moreover  are 

ex t reme points  of Ki.  Let  u expose v with respect  to K;  say, u • v = 1 and 

u-  v ~ < 1 for v ~ in K \  {v}. I t  follows easily tha t  u also exposes each of vi relative 

to Ki.  Define 

U¢= {wC K I u . w >  I - E } ,  

so tha t  ~ ( - 0  U~ = {v}. Denote  the d iamete r  of a set U, d i a m ( U )  (Euclidean 

distance is good enough here). Then  obviously d iam (U~) ~ 0. We may  suppose 

u.vi  = a i  > 0 ;  

then  a l  + a2 = 1 and u .  y < a i  for all y C K i \  {vi}. Define the counte rpar t s  of 

u~, 

v[  = { ~  Ki l u ' y  > a i - ~ }  • 

Clearly, { (wl,  w2) C K1 × K2 ] wl + w2 C U} C_ U 1 x U~. As u also exposes 

vi, bo th  d iam(U~)  ~ 0 as e ~ 0. By uniform continuity of each of the hi, for 

e > 0, there exists 5(e) > 0 (with 5(e) ~ 0 as c --* 0) such tha t  ]yl _ y2] < 5(e) 

(where yJ belong to Ki)  implies Ihi(y 1) - hi(y2)l < e. Since d iam (U~) -~ 0 for 

each i, there exists f((~) 0 such tha t  i -~ U}(~) is contained in the ball of radius  

5(e) - 5 centred at  vi. Choose e > O. On U}(~), hi differs f rom the constant  

ffmction with value hi(vi) by at  most  e. I f / ?  is an open set containing v and 

contained in ball centred at  v with radius 6(c) or less, then  we see tha t  

It/1 * r / 2 ( B ) -  hl(vl)h2(v2)tt(B)[-- -..fk%~h(B - x) drl2(x)-fw2pl(B.,, x) dp2(x) i 

: ~xEK2 ~yEB-x hl(y)h2(x) -- hl(Vl)h2(v2)d~tl(y)d~t2(z) 

JxEU.f(2~(o)JYE(B-z)NU~(2$(()) 

{~([hi(Vl){ + [h2(Y2)[) J~x J~y d~tl(y)d~t2(x) 
EU 2 E(B-x)nU 2 f(2~(~)) 1(26(~)) 

= e(thi(Vl) I + Ih2(v2)l)p(B). 
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Dividing by #(B) ,  we have 

7/1 * ~2(B) hl(Vl)h2(v2) (*) 1*(B) < e(]hl(vl)l + Ih2(v2)l). 

As e tends to zero, so do 5(e) and f(~), and thus the radius of the ball does as 

well. So (d(rh * y2)/d#)(v)  = hl(vl)h2(v2). 

We require only a minor modification to deal with the sequence {zj} .  Pick 

> 0; there exist jo such that j >_ jo implies Iv - zjl <_ 6(e)/2. For j > jo, let 

B be any open set containing zj and contained in zj + B~(~)/2 (where Ba is the 

ball of radius a centred at the origin). Then B C_ v + B~(~) and we can apply the 

previous computation to obtain (*) (since we are permitted to divide by #(B)  in 

this case as well, by hypothesis). In this case, the left fraction is an approximant 

for (d(rh * rl2)/d1*)(zj), which we obtain by permitting the diameter of B to go 

to zero. | 

The following is probably well known. As is usual, a measure on a topological 

space is fa i th fu l  if its support is the whole space. 

LEMMA 3.2: Let K = K1 + K2 be a sum o[ compact convex bodies in l=t d with 

probability measures g = t'2 * 1"2 where cvx supp 1"i = Ki. Let hi : Ki  --+ R be 

continuous, and define signed measures via dr h = hi d1*i. Suppose in addition 

that d1*i = Hi dA where A is Lebesgue measure, H i : K i  --+ R + are continuous, 

and HI vanishes on the boundary of  K1. Suppose in addition that 1" is a faithful 

measure on K .  Then 
d(rll * r12) 

d1* 

is a [unction continuous on the interior of  K .  

Proo£" We note that H1 extends to a continuous function on all of l:t d by setting 

it to be zero outside Ks. Thus hlH1 also extends to a continuous function on all 

of R d. Then d~l = hlH1 d&, and the Radon-Nikodym derivative is continuous 

(on all of Rd), bounded, with compact support; and dr/~ = h2H2 dA and here the 

Radon-Nikodym derivative is bounded, with compact support, and continuous 

except possibly at the boundary of K2. Writing d(r/1 * r/z) = hdA, it is well 

known that  h is continuous. Similarly, d(1'1 * #2) = H d)~ where H is continuous. 

Faithfulness of Pl ensures that H vanishes nowhere on the interior of K.  Then 

d(rh * r]2) d(rh*r/2) h 
dA 

d1* ~ H 
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which is continuous on the interior of K. | 

COROLLARY 3.3: Let  # be a probabili ty measure on R a such that  

K = cvx supp # 

is a compact  body. Suppose there exists a neighbourhood U in K o f  the boundary  

o f  K such that  # is faithful on U. Then there exists n such that  for all m >_ n, 

#(m) = # ,  . . . ,  # is a faithful measure on inK.  

P r o o f  If  #(n) is faithful on n t ( ,  then all higher convolution powers are also 

faithful on the corresponding multiples of K.  Hence we need only show some 

power is faithful on the convex hull of its support; this means we can systemati- 

cally replace # by a power of itself at any point in the argument. By compactness 

of the boundary, there exists a positive real number c such that  if k is a point in 

K with ] l k -  vii _< c for some v in the boundary of K,  then k belongs to U. By 

convolving # once with itself and shifting K (say so that  the origin lies in the 

interior of the support) ,  we may assume ¢K and S~ = K \ ( 1  - c )K are contained 

in the support  of tt for some positive e. Then the support  of #(m) will contain 

0 (acK + ( m -  a)S~), 
a = l  

and it is not difficult to verify that  this will exhaust m K  if m > 2/e. | 

THEOREM 3.4: Let  # be a probabil i ty measure defined on R d with the following 

properties. 

(a) K := cyx  supp # is a strictly convex compact  body  in Rd; 

(b) # is absolutely continuous with respect to Lebesgue measure. 

Then Gcont(#) exists and is a partially ordered algebra. 

Proof: Since cvx supp p(m) = inK ,  we may replace # by a convolution power of 

itself at any point, l~rom absolute continuity, convolving # with itself a couple 

of times will allow us to assume that  it has continuous Radon-Nikodym deriv- 

ative with respect to Lebesgue measure. A further convolution will allow us to 

assume that  the Radon-Nikodym derivative is strictly positive on the interior 

of a neighbourhood of the boundary. By Corollary 3.3, a further convolution 

power will be faithful, and yet another will guarantee that  the current Radon-  

Nikodym derivative be strictly positive on the interior of the convex body. So 
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we are in the situation that  d#(~)/dA = H where H is strictly positive on the 

interior of nK,  and of course vanishes on the boundary, and is continuous (it of 

course extends to a continuous function on all of Rd); moreover, these properties 

persist if n is increased. With H playing the role of H1 in Lemma 3.2, we have 

that  f = d(rll * rl2)/d#(n+l) is continuous on the interior of (n + 1)K. Every 

boundary point of a strictly convex compact set is exposed, so by Lemma 3.1, f 

is continuous on all of (n + 1)K. | 

The strictly convex situation is perhaps disjoint from the original context of 

the finitely supported case. It  is considerably easier to give an existence result 

when there is "enough" measure attached to the boundary. On the other hand, 

when there is not enough (or as more frequently happens, none at all) measure 

assigned to the boundary, the conclusion of Theorem 3.4 actually fails, even when 

d#/dA is C °~ and vanishes nowhere on the interior of K (in fact for K a square), 

Example 6.1. In order to obtain existence theorems for more general convex 

bodies, a somewhat more complicated development is required, examining the 

behaviour near the boundary. 

Let F be an exposed face of K with d i m F  = f ;  we assume f > 0, so F is 

not a singleton. The set of vectors in the unit ball of a d that  expose F spans 

a subspace of dimension d - f in which it is open. Let u be any unit vector 

that  exposes F,  normalized so that  u . w  = 1 for w in F.  For 0 < 5, define 

A6 = { w E K [ u.  w >_ maxw,eg {u.  w'} - 5}. Define probability measures #~ 

on K via 
fA, / ~  h(w) dp~ = 

h(w) d#(w) 

eg  #(A6) 

for continuous h : K  ~ R.  I t  is completely routine to verify that  any limit point 

(in the weak topology) of a countable subsequence of {#~}, with the 5s tending 

to 0 must be supported on F. In general, it is not true that  {#~} converges to a 

measure even when it is absolutely continuous with respect to Lebesgue measure 

and its Radon-Nikodym derivative is C a .  Let us assume that  {it~}6-~0 converges 

to a measure itF. (Simple examples with d = 3 and f = 1 reveal that  itF depends 

on the choice of exposing vector u and not just the face F).  This is often easy 

to verify. 

If F consists of a single vertex, then #F must be the point mass, and of course 

convergence does occur (no mat ter  which # we pick!). This is what makes the 

strictly convex situation much easier to deal with than the more general case. 
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Compare the following with Lemma 3.1. 

LEMMA 3.5: Let F be an exposed face of dimension exceeding zero, of the com- 

pact convex body K; let # be a probability measure on K with cvx supp # -- K.  

Suppose {#~}e-~o -* #F, and moreover assume that #F has no mass on the 

boundary of F. Let m and n be positive integers, and let hl : m K  -* R and 

h2 : nK  --* R be continuous functions, with corresponding signed measures TI~ 

defined by &h = hi d# (m) and d712 = h2 d# (n). Let 711,F be the signed measures 

given by d?)l,F = h l ] (mF)d#  (m) and d~2,F = h2](nF)d# (~). Then for all v in 

(m + n)F,  
d(7/1 * ~/2) d(~l , f  * ~2,F) 

Let zj be a sequence of points of (m + n ) K  converging to a point v in (m + n )F  

with the property that  #(re+n) does not kill any neighbourhood of any zj. Then 

lira d0h * Y2) d(~l,F * U2,F) ( ( z j ) - - ~ u  ¢ - 4 ~  ~ , v , . 
dp(m+~) J 

Proof: Let F denote the affine span of F,  so that  F is a translate of a subspace of 

R d, say having dimension f with 0 < f < d. Fix a unit vector u exposing F with 

respect to K,  and define A~,m = { w C m K  I u .  w > (maXzemg U" z) -- e}. For 

e > 0 there exists t(e) > 0 (depending on m, but in an obvious way), such that  

dist (w, F)  < t(e) for all w in A~,m with t(e) ~ 0 as e -~ 0. Define P~ :A~,m -* m F  

via P~(w) = WE where w t  is the closest point in m F  to w. Then P~ (depends 

on m) is continuous. For continuous h : m K  - ,  R, define hE:A~,m ~ R via 

h~(w) = h(wF). Uniform continuity of h yields IIh - h~llA~,~ < s(e) where 

s(e) --~ 0 as • --~ 0; obviously s depends on h. 

Now apply the preceding with m = re(i). If wi belong to m ( i ) K  respectively 

and Wl + w2 lies in Ae,m(1)+m(2), then it is immediate that  wi belongs to A~,m(0. 

Hence for W C Ae,m(1)+m(2), 

• 7/2(W) --- . £  ~/l(W - z) &/2(z) 

-= z )  

I f  we let W range over a family of balls with radii converging to zero and centred 

at the same point, y, then we obtain 

d(~l * r/2) f 
d~ -~-~-~1~-~-((2)) (Y) = JA hl (y  - z)h2(z)d#(m(2))(z). 

,~(2) 
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The absolute value of the difference between this and 

~,rn(2 h~ 
A l(y - z)h (z) dit(m(2 )(z) 

is bounded above by it(m(2))(A~,m(2))([[hl [[s2(e)+[[h2[[Sx(e)) (using the supremum 

norm). For y in (m(1) + m(2))F,  we deduce that  as e ~ 0, 

- 

it(m(2))(A~,m(2)) (2)F hl(y z)h2(z) ditF(Z). 

This yields (with y = v) the first conclusion. 

For the second, set y = zj; as zj ~ O, the corresponding e (required so that  

A~,,~(2) contain zj) go to zero and uniform continuity of h~ yield the result. | 

The argument in the proof can be modified if we merely require that  

it(n)(O(nF)) ---* 0 as n -~ c~, instead of insisting that  the measure of the boundary 

of F be zero. 

THEOREM 3.6: Suppose that it is a probability measure defined o n  I:t  d such that 

(a) K := cvx supp # is a compact convex body; 

(b) it is absolutely continuous with respect to Lebesgue measure; 

(c) every face F of dimension exceeding zero of K is exposed and there is a 

choice of exposing vector so that it~ converges (weakly) to a measure #F 

on F such that itF(OF) = O. 

Then Gco,t(#) exists and is a partially ordered algebra. 

Proof'. The smoothing argument in Theorem 3.4 permits us to assume the R-N 

derivative of it with respect to Lebesgue measure is continuous and vanishes on 

the boundary; then continuity on the interior of the relevant Radon-Nikodym 

derivatives follows as in that  proof, and continuity on the boundary follows from 

Lemma 3.5. | 

I t  is reasonable to conjecture that  if Gcont(it) exists and is a partially ordered 

algebra, then for every exposed face F,  #g  exists. 

Convergence of it~ is an interesting property. All limit points will automati-  

cally be supported on F,  so the limit measure, if it exists, will be a probability 

measure on F. For instance, suppose dit = hdAg,  K = cvx supp h, h : K  ~ R is 

continuous and does not vanish identically on F; say the latter is of dimension f .  

A plausible guess is that  {#~} converges, and it should converge to the measure 
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obtained by normalizing f-dimensional Lebesgue measure on F weighted by hiE. 
If f = d -  1 (i.e., F is a facet, a face of codimension one), then F is automatically 

exposed (as are all maximal proper faces), and a simple argument will be given 

to show that both parts of the guess are true. However, if f < d - 1, it is easy 

to give examples where #~ converges, but the limit will not have R-N derivative 

hlF; moreover, the limit measure depends on the choice of exposing vector u. 

(In three dimensions, take a wedge which is obtuse at the front and very sharp, 

i.e., acute, at the back, with the face being the obvious edge, and with h = 1; 

there is more mass at the front-- the cross-sections are bigger--than at the back, 

so any limit measure will have more mass near the front than the back, and thus 

cannot be Lebesgue measure.) 

If h is identically zero on the face, then {tt~} need not converge at all (Example 

6.1). If F is a facet and h is the restriction of a function real analytic on a neigh- 

bourhood of F in R d, then an easy argument reveals that the limiting measure 

exists and is given by renormalizing (u.  Vh)l~ (where u exposes F)  if the latter 

is not identically zero; otherwise take a sufficiently high directional derivative. 

For lower-dimensional faces, there are problems in deciding convergence; this is 

already apparent in the argument of Lemma 3.5. 

To obtain some results about convergence of {#~}, fix a compact convex body 

K with measure # satisfying cvx supp # = K, that is absolutely continuous with 

respect to Lebesgue measure; suppose h is the R-N derivative (with respect to 

Lebesgue measure). Let F be an f-dimensional face exposed by the unit vector 

u, and form A~ as above, together with the flat 

K~= {kEK,u.k=(maxu.w)-c}.~cK 

The boundary of A~ is K¢ together with (for e sufficiently small) the graph of 

a function g¢ :K~ ~ R +. The graph of g is just the portion of the boundary 

of K cut off by K~. Since A¢ is convex, - g  is convex (as a function), and so 

g is continuous on the relative interior of K~ (a d -  l-dimensional space) [F; 

Theorem 3.5, p. 110]. For e in F,  let Ce,¢ be the d - f-dimensional cross-section 

obtained by intersection A~ with the affine space passing through e orthogonal 

to F. Possibly for some points on the boundary, Ce,~ will be a singleton; to avoid 

this and other pathologies, we observe that for any closed neighbourhood in the 

relative interior of F,  for all sufficiently small e > 0, not only is Ce,¢ N K~ of 

biggest possible dimension, d - f - 1, but C~,~ is the convex hull of K~ with the 
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graph of diKe, for all e in the neighbourhood. Again by making c small enough, 

we can also assume that Ce,~ consists of precisely the points w in A~ for which 

e is the nearest point in F to w. Let B be such a closed neighbourhood; we are 

free to increase B so that hE(B) is arbitrarily close to I (in order to have the 

other properties holding, this will require reducing e). 

Write d# = h dA. Let A denote d - f-dimensional Lebesgue measure, and let 

q:K ~ R be continuous. We wish to investigate the behaviour (as e ~ 0 and as 

B tends to F)  of 

(1) #~(q) . -  fA, qhdA 
fA, hdA " 

By Fubini, for any continuous p:K ~ R, 

(2) /BPdA = ~eeF /C~. pdAd~F(e ). 

As p is uniformly continuous on K,  there exists s(e) (depending on p) such 

that ] p ( w ) -  p(WF)[ < s(e), where the latter goes to zero as e does. The 

expression (2) is approximated by fFP(e)dA(C¢,¢) with an error of at most 

fF s(e)~(Ce,e) dAF(e) = s(~)A(B). Apply this in (1) with p = qh and p = h. 

Set M = fBq]F h]FdAF, Y = fsh[FdAF, 51 = fA, qhdA- fBq]F hlFdAF, 
and 52 = fA, hdA - fB h[FdAF. Then 

fA, q hdA fBq[F h[FdAF _ M +5~ M 
(3) fA, hdA fB h[F dAF N + 52 N 

51 M 5 2 

N + 5 2  N N-b52 

We are assuming h is nonnegative, and at this point we must assume h]F is not 

identically zero. We show that 51/N and 52/N go to zero as e does. However, 51 

is at most Sqh(e)A(A¢), 52 behaves similarly, and 

N = / B ( h [ F )  A(C~,¢)dAF. 

By picking a neighbourhood in B where h is greater than some number to, we 

easily obtain N exceeds some multiple of A(A~), the multiple not depending on 

e. So both 5i/N tend to zero, and thus the difference in (3) tends to zero. 
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Consider the normalized distributions (i.e., nonnegative functions whose inte- 

grals are 1) on F,  

Dc,~ = ~(C~,~)/ /rCe,~d,~F(e). 

For e fixed, the function D~ : In t (F)  ~ R + is continuous. If D( converges point- 

wise almost everywhere (as c tends to zero), say to D, then {#(} will converge to 

the measure on F whose R-N derivative with respect to to ~ -  is D, and we will 

be done. (Observe that  we are not required to show that  D is continuous, simply 

that  the measures given by D~ converge weakly.) So it remains to investigate 

conditions under which this convergence occurs. (Note that  we can expand the 

domain of D¢ to the relative interior of F,  by continuously enlarging the closed 

neighbourhood B as e shrinks.) 

If A" is a polytope (or is locally a polytope, around the face F) ,  then in fact 

for all e in the relative interior of F and sufficiently small c (depending on e), 

and all t in the interval (0, 1), 

~(ce,,~) = t~-~,(c~,~) .  

To see this, we pick our closed neighbourhood /3 in F and by selecting d suf- 

ficiently small, for all e in B, the set of points in Ae nearest to e lies on the 

orthogonal set Ce,e, which is itself a polyhedron and a cone with base in K e .  

Dilating e I just truncates the cone, so its d - f-dimensional volume is multiplied 

by the amount of the dilation to the d -  f power. Hence for each e in the interior 

of F,  {D~,~} is eventually constant (as e goes to zero), and this is more than 

enough to guarantee pointwise convergence a.e. 

The upshot of this is that  if I f  is a polytope and h does not vanish identically 

on a face of dimension exceeding 0, then tt~ does converge to a measure on F. (If 

F is zero dimensional, convergence is automatic,  as we have seen.) Hence: 

COROLLARY 3.7: Let  t (  be a compact  convex  po ly tope  wi th  interior in R d and 

let # be a probabi l i ty  measure  on K such that  cvx  supp#  = K and d# = h dA, 

where h : K ~ R is cont inuous and does not  vanish identically on any proper  

face o f  dimension one or more. Then Gcont(P) exis ts  and is a par t ia l ly  ordered 

algebra. Moreover, for each face F o f  dimension exceeding zero, #F exis ts  and 

contains supp h[F in i ts support .  

Since convergence of {#~ } is linked inextricably with the cross-sectional volume 

function ~(C~,~), it is worth investigating the behaviour of the latter as e goes to 
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zero, for more general convex bodies. For example, if the face is of codimension 

1, then C~,~ is simply a line segment of length proportional to e, and the D~ are 

again ultimately stationary for every e in the relative interior of F (one can think 

of this case and the zero dimensional case as special cases of "polyhedral" cones, 

because the arguments parallel those for polytopes). 

V. Zurkowski observed that any limit measure of {D~} has a continuous R-N 

derivative that cannot vanish on the relative interior of F.  

If h[F vanishes, it can still happen that {p~} admits a unique limit measure. 

For example, suppose F is a facet exposed by the unit vector u, h[F = 0 and 

(u.  Vh)]F  does not vanish identically. Then {p~} converges to the measure on 

F with R-N derivative (u • Vh)]F renormalized. To see this, approximate A, 

by B as we did before, so that the cross-sections C~,~ are just line segments of 

the same length l (depending linearly on e). Integration over P~-I(B) is quite 

easy, since it is a product space (B with an interval)--for s:K --~ R continuous, 

f g ft~=o s dtdA g equals fF ft~=o s( e-- ut ) dtdA F( e ), so f n~ h dA is sufficiently closely 

approximated by elF ft~=o h ( e -  ut)/cdtd~F(e), and this closely approximates 

e fF(u .  Vh)IFdAF, etc. (the details are routine). However, when F is lower 

dimensional, it is not clear what happens. 

4. P e r f i d ious  t r a c e s  

Here we show that in many cases, the map from the pure trace space of G = 

Gcont(#) to K = cvx supp tt, F :Te(G)  ~ K,  is a homeomorphism, and describe 

how pure traces arise as limits of point evaluation traces. 

Let u and a be points in R d, with u nonzero. Define the ray, X~,a :[0, cxz) ~ R d 

via X(t) =_ X~,a(t) = tu + a. We create a one parameter family of pure traces 

on each of Ga¢(#), G~(# ) ,  and Gcont(#) (in the last case, if it exists), 

fRd exp(X(t)  • w) dr(w) 

= fRd  :w) 

Then F~(~,x(t)), F('~x(t)) are paths in K. It turns out that all the limit points 

of these paths (as t --* c~) lie in the face of K exposed by u, that is, in the face 

We have something a bit stronger; this is almost entirely in [H4; Lemma E8, 

p. 125], but the proof is included here because of conflicting notation. 
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LEMMA 4.1: Let {rk} be an sequence of points in R a such that y is a limit point 

o f { F ~ ( T r k ) }  in K,  and l iminf  [Irkl]2 = oo. Then y belongs to the union of the 

faces of K exposed by the limit points (in the unit sphere of R d) of f ~ } 
[ 1 1 r k 1 1 2  " 

Proo~ Define probabi l i ty  measures  on K ,  dpk by normalizing exp(rk • - )  d# so 

tha t  its mass  is one. Choose a limit point of this family of probabi l i ty  measures  

(in the weak topology),  u. We show tha t  the suppor t  of u will be in the face 

exposed by a limit of {rk/llrkll2}. 
Form uk = rk/llrkll2; we m a y  refine the sequence {rk} so tha t  d#k converges to 

u, and let u be a l imit  point  of  the corresponding points  of  the sphere, {rk/tlrk II2}; 
we may  refine the sequence so tha t  uk converges to u. Let  b be a real number  

less than  a = sup { u .  k I k C K } ,  and let F be the face exposed by u. Let A be 

the closed set { w C K ] u .  w < b} ; pick a real number  e between a and b, and 

let B be the slice { w C K I e _< u .  w _< a} .  We show tha t  u(A) = 0. 

We m a y  t rans la te  K so tha t  a > e > 0 > b. By assumpt ion,  I (  contains 

interior, so F ¢ K .  Then  

fA exp( rk"  w) dp(w) 
pk(A) = fK exp( rk w) dp(w)  

(1) 
< #(A) sup { exp( r  k . w )  I w e A} 

- #(B)  i n f { e x p ( r  k.  w) I w • B} " 

Let M = SUPwEg Ilwll. Given e > 0, for all sufficiently large k and all w in K ,  

Iluk • w -  u .  wll < eM. Select e so tha t  eM < Ibl; then uk .  w < u .  w + eM for 

all w in A. Hence for all sufficiently large k, and all w in A, rk • w < 0. So the 

numera to r  is bounded  by u(A). 

We also have Uk • w > u • w -- eM. We may  further  reduce e so tha t  eM < 

e/2. Hence for w in B and all sufficiently large k, Uk • w > e/2;  for such w, 

rk . w  > ~Hrkll. So the denomina to r  of the expression in (1) is bounded  below 

by # ( B )  exp e I Irk I I/2; since the original set of rk 's  has no bounded  limit points,  

the refined set does not either. So as k increases, the denomina to r  becomes 

arbi t rar i ly  large. Hence u(A) = 0. 

Trans la te  K back to its original posit ion, and let b take any value less than  a. 

We deduce t ha t  u ( A \ F )  = 0, so u is suppor ted  on F .  

Point  evaluat ion t races  are sent by F ~ (and by its counte rpar t  l") to the  

barycent res  of the corresponding measures,  i.e., 

"/r ~--~ /K  w exp(r " w) d#(w) / /K  exp(r " w) d#(w). 



140 D. HANDELMAN Isr. J. Math. 

From u being a limit point of the corresponding measures, we have that  y ---- 

fK W du, whence y lies in F.  This obviously applies for each choice u of limit 

point of { ilrkll~--r-~ }. | 

Suppose 7 is a pure trace of Gcont(/g) (which we now assume to exist). Then 

we obtain a compatible family of positive linear functionals, Pn :C(nK) ~ R 

obtained from the maps C(nK)  ~ C(nK,  #(n)) ~ Gcont(tt). We often use Pn to 

denote the corresponding probability measure it induces on nK.  I t  is reasonable 

to call {pn} a h a r m o n i c  f a m i l y  o f  m e a s u r e s .  

Let u and a be a pair of vectors in R d with u not zero, and suppose that  u 

exposes a zero-dimensional face, i.e., an exposed point v of K.  For each integer 

n define the positive linear functionals, pn as the point mass at nv (the corre- 

sponding vertex of nK).  We claim (a) that  {pn} defines a multiplicative trace 

on Gcont, and (b) that  the resulting pure trace is obtained as the limit of 7x~,~(t) 

(t - - *  

Without  loss of generality, we may assume Ilull2 = 1. Pick a strictly increasing 

unbounded sequence {tk}keN of positive numbers, and set rk = tku + a; then 

uk = rk/llrkll converges to u. Then Lemma 4.1 applies, and we deduce that  the 

limit point y must be v. We can also apply this with # replaced by p(~) for any 

positive integer n, so that  v will be replaced by nv. Let u be a signed measure 

on n K  such that  du = h d# (n). Set 3, k = 7r~; then 

fnK h(w) exp((tku + a) . w) dp(n)(w) 

7k([u, n]) = fnK exp((tku + a ) - w ) ~  (2) 
I "  

= / h(w) 
Jn K 

where #k is defined as in the proof of Lemma 4.1, with respect to #(n). Any 

limiting point of the probability measures #k must have its support  in the face 

exposed by u, in this case, the singleton consisting of nv. Hence these converge 

to the point mass, and so the limit, as k increases, of the terms in (2) is simply 

h(nv). This simultaneously proves (a) and (b). 

The upshot is that  given an exposed point v of h ' ,  there is a unique multi- 

plicative trace "~ of Gcont such that  both r(~/) = v and ~, is a limit of point 

evaluation traces, its corresponding sequence of measures consists of the point 

masses at nv, and it can be obtained as the limit of point evaluation traces by 

taking any ray in R d whose directional derivative exposes v as a vertex of K.  
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In the case tha t  K is s tr ict ly convex, every boundary  point  of K is a vertex,  

so we obta in  a family of pure  traces such tha t  F induces a bijection between it 

and the bounda ry  of K .  We now proceed to show tha t  F is a h o m e o m o r p h i s m  

between the pure  t race space, Te(Gcont(/~)) , and K .  A par t icular  consequence 

is tha t  the point  evaluat ion traces are dense in the pure trace space (a p roper ty  

which is nei ther  obvious nor generally holds, even for reasonable choices of p).  

Whenever  this phenomenon  occurs it follows tha t  F acts by sending traces to 

their  "barycentres" .  Explicitly, if 7 is a pure trace, it induces a posit ive linear 

functional on the first level, C(K, p), hence a probabi l i ty  measure  p on K;  then  

F(3') is the barycent re  of p, t ha t  is, fK w dp. This  is not  obviously a consequence 

of the definition of F. 

PROPOSITION 4.2: Let p be a probability measure on a d such that 

K = cvx supp # 

is a compact convex body. Suppose that Gcont(#) exists. Let ~ be a pure t race 

that is not faithful, and let {Pn} be its corresponding harmonic family of mea- 

sures. There exists a proper face, F, of K such that pn has its support in nF, 

and additionally for all sufficiently large n, cvx supp Pn contains a point in the 

relative interior of nF. 

Proof: By hypothesis ,  7[r/, n] = 0 for some n and nonzero posit ive measure  

~/ with dr/ = h d #  (n) and h : n K  --* R continuous. If  W is the cozero set of 

h (i.e., W = { w E K [ h(w) > 0}),  then obviously pn(W) = 0 and for all m,  

p~+,~(W + inK) = 0. Suppose tha t  Y is an open subset  of pK (for some p) 

whose closure lies in the interior of pK. Then  there exists an integer M > n 

such tha t  M Y  C_ W + (Mp - n )K  (the distance from M Y  to the bounda ry  o f  

M p K  becomes arbi t rar i ly  large). There  exists a continuous nonnegat ive  funct ion 

g with suppor t  contained in W such tha t  if gu  is the R a d o n - N i k o d y m  derivat ive 

of ~.#(Up-,~) (where d~ = g d#(n)), then M Y  _C g u  1 ([1--~, 1]) for some ~ between 

0 and 1. Define r/M via dr/u  : g u  d# (Mp). If  ~r is a measure  wi th  dTr = f dp  (p) 

and the continuous function f is suppor ted  in Y, then 7r (M) _< Nr/M for some 

integer N.  Hence [~r (M), Mp] <__ N[~IM, Mp]. Since g is suppor ted  in a set tha t  

is killed by Pn, 7[OM, Mp] = "~[~,n] = 0. Thus  7[~(M), Mp] = 0. Since -y is 

mult ipl icative,  "y[Tr, p] = 0. Hence pp(Y) = O. 

So any open set with closure in the interior of pK is killed by pp, for any p. 

Hence the suppor t  of pp is contained in the bounda ry  of pK. Next we show 
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that cvx supp pp is contained in the boundary, which is another way of saying 

supp Pv is contained in a proper face. Let F and F r be faces of K whose sum 

contains a d-ball. Let U and V be disjoint closed subsets of the two faces pF,  pF  ~ 

respectively, such that U • p F  ~ and V N pF  are empty, and we can additionally 

choose them so that U + V itself contains a d-ball. There exist nonnegative 

continuous functions f ,  f '  respectively on p K  such that f is zero on V, one on U 

and very small off a small neighbourhood of U, f r  satisfies these properties with 

U and V interchanged, and supp f ~ OpK C pF,  supp f~ N OpK C p F  ~. Form 

the corresponding measures via drh = f dit (p) and d~2 = f '  d# (p), and convolve 

them. 

Suppose that  each 7[~, P ] ¢  0. By multiplicativity, 7[~1'~2, 2/)] ¢ 0. Observing 

that  U + V contains a d-ball, it is easy to see that PXp contains an interior point 

in its support. This is a contradiction. Hence the support of pp is contained in 

a proper face. For each p, there exists a minimal face Fp of K such that pFp 

contains the support of pp. The same addition argument yields that all the Fp 

must be the same for all sufficiently large p. | 

THEOREM 4.3: (Generalization from finitely supported measure to measures the 

convex hull of  whose support is a strictly convex body.) Let K be a compact 

strictly convex body in R d, and let it be a probability measure on K such that 

K = cvx suppit. Suppose that Gcont(#) is defined (as occurs i f  it is absolutely 

continuous) and it is not singular. Then: 

(a) The naturM map F: Te(Gcont(it)) "-~ K is a homeomorphism. 

(b) The point evaluations traces are dense in the pure trace space of  Gcont(it). 
(c) All non-faithful pure traces are of the form k]  (kv) for each v in 

the boundary of  K .  

(d) Each of  the non-faithful pure traces is obtainable as the limit (as t --~ ~ )  

of point evaluations 7x~.,(t), where u exposes v relative to K and a is any 

vector. 

Proof: (a) We have that F:Te(G¢ont(#)) + K is a continuous map between 

compact Hausdorff spaces. It is onto, since the map restricted to the point 

evaluations is just the Legendre transformation, and that maps onto the interior 

of K. It suffices to show F is one to one. Pick w in K, and let 7i be pure traces 

such that F(7~) = w. 

If w lies in the interior, then by Proposition 4.2, neither 7~ can be non-faithful, 
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so must be faithful. By Theorem 2.4, ~i are point evaluations, say at ri; but the 

value of F at a point evaluation at r is simply the Legendre transformation of 

r. Since the Legendre transformation is one to one (on points of a d ) ,  r l  = r2, 

whence 7i are equal to each other. 

If w lies in the boundary, each ?i must be non-faithful (as extremal faithful 

traces are point evaluations, so are sent to a value of the Legendre transform, 

hence to the interior of K).  Each has a corresponding family of probability 

measures p~,i on n K ,  and by Proposition 4.2, Pn,i is supported in nF(i )  where 

F(i)  are faces of K.  For a strictly convex set, the proper faces are singletons, so 

F(i)  = {v~} with v~ being vertices. It  is easy to check now that  F(7~) is thus v~, 

so vl -- v2, and thus Pn,1 = P~,2 for all n, whence 71 = ~f2. In particular, F is 

one to one, concluding the proof that  it is a homeomorphism. 

Part  (b) is an immediate consequence of this, Proposition 4.2, and the earlier 

comments, as are parts (c) and (d). | 

If  we permit  line segments in the boundary of our convex bodies, more com- 

plications arise. Note that  the assumption in the following that  Gcont(#) exist 

and be a partially ordered algebra is often redundant, by results of section 3 

(Theorem 3.6 or Corollary 3.7). 

THEOREM 4.4: Let K be a compact convex body in R d, and let # be a probability 

measure on K such that Gcont(P) exists and is a partially ordered algebra, having 

the following properties: 

(a) K = cvx supp #; 

(b) p is absolutely continuous with respect to Lebesgue measure on K and 

h := d#/dA is continuous as function on K;  

(c) every face F of  K is exposed and for every face of dimension exceeding O, 

{#~} (see section 3) converges to a measure on F, #F; 

(d) for all faces F of dimension greater than zero, cvx supp/ZF = F;  

(e) for all proper faces F of  dimension exceeding zero, every pure trace on 

Goo(pF) is a point evaluation (viz. Theorem 2.4). 

Then F: Te(Gcont(#)) ~ K is a homeomorphism, h2 particular, the point evalu- 

ations are dense in Te(Gco,t(p) ). 

Proof" It follows from assumptions (b) and (d) that  some convolution power of # 

is faithful on the corresponding multiple of K.  It  is convenient at various points in 

the argument to replace # by a convolution power of itself; the hypotheses remain 
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valid. As Gcont(/.t) exists and is a partially ordered real algebra, the pure traces 

on it are precisely the positive multiplicative linear real-valued homomorphisms. 

It suffices (as in the proof of Theorem 4.3) to show F is one to one. By Theorem 

2.4, F reduces a bijection between the faithful pure traces and the interior points 

of K. So suppose "y is a pure trace that is not faithful, and let {p~} be the 

corresponding sequence of probability measures on {nK} induced by % By 

Proposition 4.2, there exists a proper face F such that cvx supp Pn is contained 

in nF and contains a relative interior point thereof. 

Define the following subset of G¢ont(#), 

It is easy to check that IF is well-defined and a directed, convex subspace of 

Gcont(P); it is thus an "order ideal" in it. It is also an ideal in the algebraic sense, 

and we can factor out IF and impose the quotient ordering on Gcont(p)/IF SO 

that the latter becomes a partially ordered algebra. Note that  I r  is contained in 

the kernel of % so the latter induces a multiplicative, hence pure, trace ~, on the 

quotient Gcont(p)/IF. The idea will be that the quotient is naturally isomorphic 

with Gcont(PF) and ~ will be a faithful trace on the latter. 

The restriction map C(mK, R) -~ C(mF, R), g ~-~ g]F, is compatible with the 

convolution operation that yields the map 

- ,  C((m + m )K,~  (m+m )), C(mK, #(m)) , ' 

by Lemma 3.5, with ~}2 = #(m'). It follows that Gcont(#F) exists and is a partially 

ordered algebra, and the map Gcont(P) ~ Gcont(ttF) (induced by restriction) is 

multiplicative; moreover, it is positive (nonnegative measures are sent to nonneg- 

ative measures). If [u, m] in Gcont(/z) is in the kernel of the map, then it follows 

immediately that the support of v must be disjoint from the support of #(Fm). 

If supp PF contains a relatively open neighbourhood of OF, then on replacing 

# and #F by a sufficiently high power, we can assume that  supp #F is all of F 

(Corollary 3.3). Then the kernel of Gcont(#) ~ Gcont(PF) consists exactly of 

the equivalence classes Iv, k] where dr~d# (k) vanishes on kF, i.e., the kernel is 

exactly IF. 

However, all we can assume is that the vertices of F belong to the support of 

#F. Let deF denote the set of vertices of F; mdeF will denote the set of all sums 
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of m elements of deF. I t  is easy to see that  the union, 

U (mdeF)  
m 

mEN 

is dense in F (the notation is unfortunate; the m in the numerator  refers to all 

possible sums of m elements, while that  in the denominator is supposed to divide 

every element of the set in the numerator  by m, to bring the elements back to 

F) .  If [v, k] is in the kernel of the map Gcont(#) ---* Gcont(ttF) with continuous 

dv/dp (k) = g : k K  ~ R, then each of gl := d(v . #(l))/d#(k+z):(k + l )K  ~ R is 

also in the kernel, and so must vanish on the support  of p(k+t). For convenience, 

we may assume k = 1. Suppose g[F is not zero. The support  ofg[F contains the 

closure of an open ball, hence a closed convex body, call it C, so that  if St is the 

set of sums of /e lements  of deF, then S l + C  (the set of all sums s+c where s E Sl 

and c e C) is contained in the support of gl+l ]( /+ 1)F. Now (St + C)/(1 + 1) is a 

compact subset of F which is the closure of its interior. It is routine to show that  

for all sufficiently large l, there exists 6 > 0 such that  (St + C) / ( l  + 1) contains a 

d-ball of radius 5. It follows from the density of the displayed set that  for some 

l, (1 + 1)F N supp gl+l is not empty. However, this means Iv • #(t), l + 1] does not 

go to zero under the map to  Gcont(PF), a contradiction. 

Hence in general, the kernel of the map Gcont(~ ) ~ Gcont(~F) iS contained 

in IF,  and the reverse inclusion is trivial (and unnecessary). Thus 7 induces a 

positive multiplicative linear map ~ : G c o n t ( # F )  ---* R. The latter is thus a pure 

trace. 

By Proposition 4.2, if ~ were not faithful (as a trace on Gcont(#F)), then 

its corresponding compatible family of measures would be supported on a proper 

subface of F.  However, F was defined as the smallest face containing the support  

of the measure corresponding to 7, and it is easy to see that  the measures for "y 

are the same as those for 7- Hence the latter cannot be supported on a proper 

subface. Thus ~ is faithful. By hypothesis (e) (which would be unnecessary 

if #F were known to be not singular with respect to Lebesgue measure of the 

corresponding dimension), ~ must be point evaluation at some point r in the 

affine space of dimension that  of F. 

Next, we have to verify that  the map Gcont(tt) ~ Gcont(ttF) is compatible with 

the corresponding F and FF. Let pi be the signed measure on K with derivative 

wi (i.e., projection onto the i th coordinate), so that  F('~) = (~([#i, 1])), and 
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FF(~) = (~([p~, 1])). The map (~cont(]l) " ~  Gcont(]/F) sends [pi, 1] to [tt~,, 1], so 

that  F(7) = FF(~). It follows immediately that F(7) lies in F. As ~ is a point 

evaluation, FF(~) lies in the relative interior of F, so of course, so does F(7). 

Let 71 and 72 be two pure traces with the same image under F. If either is 

faithful, its image is in the interior, so the other one must be faithful, and thus 

both are given by a point evaluation, and by one to oneness of the Legendre 

transformation on R d, the point is the same, so the traces are the same. Hence 

both must be unfaithful with image in the boundary of K.  If we define F1 and 

F2 as we did F above (for the generic 7), by the previous paragraph, F(Tj) lies in 

the relative interior of both  Fj for j = 1, 2; hence F1 = F2, and moreover, both  

7i (now known to be defined on the same quotient) must be faithful. Hence they 

are point evaluations arising from the same, lower dimensional affine space, and 

since the Legendre transformation is one to one on point evaluations, they must 

be point evaluations at the same point, i.e., they are the same trace. | 

A two-dimensional example satisfying (a) through (d) but not (e), for which F 

is also not one to one is given in Example 6.3. In this case, the measure # is a 

little strange, but absolutely continuous. 

In analogy with Theorem 4.3, it should be true that  the image of the pa th  of 

point evaluations {F(~/x~.a(t))}t.__.~ converges to fF w exp(a" w ) d # F ( W ) .  

COROLLARY 4.5: Let  K be a compact  convex poly tope  with interior in a d, and 

let # be a probabili ty measure on K such that cvx  supp It = K and h := dp /dA  

is a continuous function on K such that  for each face F of  dimension exceeding 

zero, cvx  supp (hIF)  = F.  Then  F: T,(G¢o,t(tt)) ~ I f  is a homeomorphism.  

Proo~ Simply apply Corollary 3.7 and the results above. | 

5. An ergodic/density theorem 

In many cases, either Gcont(/t) is undefined or the map F:We(Gcont(#)) ~ I f  is 

not a homeomorphism. When it is a homeomorphism, the point evaluations are 

dense in the space-time boundary, Te(Gcont(P)). We can ask whether the point 

evaluation traces are dense in Te(Goo(#)), which is always defined. A formulation 

that  characterizes density is derivable from dimension group techniques; however, 

the property appears to be more interesting as a consequence of density, rather 

than as a precursor. I ts  form is an equality of two norms, one concerning space- 

t ime and the other spatial, and resembles the ergodic theorem. 
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THEOREM 5.1: Let p be a probability measure on  R d with compact support, 

and set K = cvx supp#;  suppose K contains interior. Let G be one of Gcont(#) 

(if it exists) or Goo(p). Then the set of point evaluations is dense in the pure 

trace space Te(G) if and only for every nonnegative measure u on mI (  such that 

[u, m] belongs to G, 

(1) lim sup d(v*#(~)) (  ~ f m K e x p ( r . w )  du(w) 
n ~ w ~ ( m + n ) K  d# (re+n) ~w, = sup fmK exp(r • w) 

The left side of the expression is a limit of a sequence of L ~ norms, taken over 

the spaces (m + n )K  as n increases; it is a general phenomenon that  the sequence 

of norms is nonincreasing, so the limit exists in any case. The sup norm on the 

right is simply the supremum of %([u, m]), the values of the point evaluations. 

The right side is clearly spatial, and the left side is space-time. At the moment,  

the only useful direction occurs when F is defined and a homeomorphism (so 

the equality occurs as a consequence of density), because I know of no non- 

trivial examples where the point evaluations are dense in the pure trace space of 

G~(#) .  We shall discuss what has to be proved when K is the unit interval and 

# is Lebesgue measure (!) for density to occur, later. 

Proof of Theorem 5.1: As we noticed in the preceding paragraph, the right 

side is sup 7~ ([u, m]), the supremum being taken over all point evaluations. The 

trace space of the partially ordered unital algebra G, T(G),  is a compact convex 

set, with the multiplicative traces as extreme points, so the extremal boundary, 

T~(G), is compact.  Let u denote the element [p, 1] of G (this is the multiplicative 

identity element and also an order unit for G, the latter by construction). By 

[GH; Lemma 4.1], for an element, b of the positive cone G +, 

i n f { a e R  + ] b < a u }  = sup 3'(b) 
(2) ~e:r(a) 

= sup 7(5) 

(we have used the vector space structure of G; this simplifies the form given in 

[op. cit.]). From the definition of the limit ordering, for b = [u, m], b _< a u  if and 

only if there exists n such that  u ,  #(n) _< c~#(m+~), or what amounts to the same 

thing, for all w in (m + n)K,  

d(u * t t( ' ))  < ~. 
d#(m+n)(w) - 
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Thus the left side of (2) is the left side of (1) with the limit replaced by liminf. 

However, sup~(d(v * tt(n))/d#(r"+n))(w) is non-increasing in n as a simple argu- 

ment involving direct limits shows. We conclude that the left side of (1) equals 

sup-yeTe(a ) 7([v, m]). 

If the set of point evaluations is dense in Te(G), then 

sup 7([v, rn ] )=  sup %([v,m]), 
~/ETe (G) r E R  d 

which is the right side of (1); so the left side equals the right side in this case. 

If the set of point evaluations is not dense, there exists a positive element b of 

G and a trace 3' such that that 3'(b) = 1 but %(b) < 1/2 for all point evaluations. 

To see this, just note that any compact subset of T(G),  in this case, the closure 

of the set of point evaluations, can be separated from an extreme point by an 

affine continuous function [AE]. The image of G in its representation as affine 

continuous functions on the trace space is norm dense, so we may find b with 

7(b) = 1 (it can be scaled by a real number close to 1) with %(b) < 1/2 for 

all r in R d, and 1/4 < r(b) for all pure traces r .  Since G is a direct limit of 

unperforated groups, it is unperforated, and it follows from [EHS; Theorem 1.4], 

that b is positive. Hence b = [v, m] for some nonnegative measure and some 

integer m. Clearly, (1) does not hold for this choice of [v, m]. | 

Another consequence of density, is the following fairly weak statement about 

the positive cone in Gcont(tt).  

PROPOSITION 5.2: Suppose that G is one of G ~  or  Gcont(/t) if  the latter exists, 

and that the point evaluations are dense in Te(G). Let v be a signed measure 

such that [v, k] belongs to G and there exists 5 > 0 such that for a11 r in R d, 

fit" exp(r • w) dr(w) 
>5 .  

( rite exp(r ,  w) d#(w)) k - 

Then there exists n such that v • #(n) is a positive measure. 

Proof: Density of the trace space together with the condition hypothesized guar- 

antees that  [v, k] is strictly positive at every pure trace; as G is an unperforated 

partially ordered abelian group, [v, k] is a positive element of G [EHS; 1.4], which 

is exactly the desired conclusion. | 

Nothing seems to be easy about the extremely large algebras Go. (~). Let # be 

Lebesgue measure on the unit interval, and form G = G~(#) .  To prove density of 
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the point  evaluat ions in Te(G) ,  we would have to establish the following. Suppose 

u is a signed measure  on the interval [0, m] and du/dp (m) is essentially bounded.  

Suppose t ha t  

fo exp(rt) d (t) 
(3) ( f~ exp(rt)dt) m > c 

for all r in R.  Then  there would have to be an integer n such tha t  ~ .  p(n) 

is nonnegative.  One can t ry  to find a counter-example ,  by let t ing m = 1 and 

choosing a str ict ly decreasing null sequence of nonnegat ive  numbers  {a~}ieN. 

Form g = ~i(-1)i) / (a~+l ,a~)  (an a l te rnat ing  sum of s tep functions) and define v 

via dv = gdp. The  sequence {ai} can be adjusted so tha t  (3) holds for all real r, 

but  then it is difficult to arrange tha t  h * t n-1  not be nonnegat ive  for sufficiently 

small  t. (The p rob lem really boils down to behaviour  near  the boundary. )  A 

related a t t e m p t  would involve a function such as h(t) = e + sin 1/t, which has 

similar oscil latory propert ies.  

6. E x a m p l e s  

Example 6.1: A measure  # on the rectangle K = [0, 1] × [0, 2] such t ha t  

(i) cvx supp # = K ,  

(ii) the R a d o n - N i k o d y m  derivative of it (with respect  to Lebesgue mea- 

sure, A) is C ~ ,  and 

(iii) Gcont(tt) does not exist. 

There  exist C ~ functions g and e defined on the unit  square wi th  the 

following propert ies:  

(a) Both e and g vanish nowhere on the interior of the unit square, and their 

integrals over the latter are i; 

(b) all partial derivatives (all orders) of both functions tend to zero near the 

boundary; 

(c) define et, gt:[O, 1] ~ R via et(y) = e(t,y) and gt(Y) = g(t,y); then,  as 

t --~ 0, 

fo e,(y) 
1 d ~ ~ ;  

f0 gt(Y) Y 

(d) for any (measurable)  subset  Z of [0, 1] × [0, 1/2], 

/zg(x'y)d  < 
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Let K1 denote the unit square, and K2 its translate obtained by pushing 

it up one unit (so K = K1 U K2); define measure . i  on Ki via d . l  = gdA and 

d.2  = e(x, y - 1)dA. From property (b), the function f : I (  ~ R defined via 

g(x, y) if (x, y) e IQ 

f ( x ,  y) = e(x, y - 1) if (x, y) e It'2 

is C ~ and the its support is K, as follows from (a). N o w .  := ½#, + ½.2 satisfies 

d# = f d A g  = ! f d A .  Condition (c) implies that # becomes increasingly top 2 
heavy (more mass in a small section of K 2 than in K1)--explicitly, for small t 

varying slightly, only very small subsets of { (t, 1 + y) [ y E [0, 1]} are required to 

outweigh all of { ( t ,y)  l y  e [0, 1]}. 

We are only interested in the behaviour of .(~) on a small piece of its 

support, namely K itself. On K1, its restriction is simply the restriction of 

2-n .~  n), and on I(2, it is the restriction of 2 - ~ ( n . ~ - 1 ) *  .2  + . ~ ) ) .  As we 

shall only be interested in what happens near the y-axis, the .~'~) term in the 

latter expression can usually be ignored (by (c), its effect is increasingly small, 

• ( ~ - ~ )  K 2 ) .  as x --* 0, when compared with that of t~l * ,2 on 

Consider the two line segments in K ending at (0, 1): 

S(t)  = ( t , t  + l) T(t)  = (t, 1) t ---~ O, t <_ l. 

Obviously S(t)  lies in K2 and T describes the boundary between K1 and K2. We 

will establish the existence of a continuous function h : I f  ---* R and corresponding 

measure u on K (du = h d#) such that for all sufficiently large n, either 
d u*tt (")) t (I) limt--.o ~ r c t ÷ ~ d t ,  ("+1) t~t~H or limt-.o dtt(,t+l) (T() )  does not exist, or 

(II) the limits exist and are not equal. 

Let tit denote the rectangle in / (2  with vertices, (0, 1), (t, 1), (0, 1 + t), and 

(t, 1 + t). For z = (a, b) in the interior of K,  (z - K)  n I f  = (z - n K )  n n K  and 

this is contained in the rectangle with vertices (0, 0), (a, 0), (0, b), and (a, b). Let 

H be the Radon-Nikodym derivative of p(,0 with respect to Lebesgue measure. 

Then 

~ - ~ ( h * H ) ( S ( t ) ) =  h ( ( t , t + l ) - ( x , y ) ) d ( n p ~ n - 1 ) * # 2 + # ~  ~)) 
~ uVt  

= / K  h((t, t + 1) - (x ,y))  dg~ n)) 
~ u V t  

+ Iv,  h((t, t + 1) - (x, y)) d(n#~ n- l )  * .2).  
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Now assume that - 1  _< h _< 1, h is 1 o n  V1/4 - ( 0 ,  1), and h is - 1  off a small 
(~-i) 

neighbourhood of it. For t < 1/4, the right integral is simply n#l  * #2(Vt); 

the first integral (second line of displayed equation) is over a set with proportion- 

ately very small mass--as t tends to 0, the ratio #~)(I(1 U Vt) / (nt t~n-1)* #2(Vt)) 

becomes arbitrarily small. The outcome is that 2-~(h • H ) ( S ( t ) )  behaves as 
(n-a) 

n#  1 * p~(Vt) for small t. On the other hand, 2 -n#  (n+l)(K N Vt) just decom- 
(~-i) 

poses as n#a * p2(Vt) + p~)(h'1 N Vt), and the second term is small in ratio 

to the first. So we have 

lim d(u • #(~)) 
t~o dp(n+ 1) ( S ( t ) ) =  1. 

On the other hand, the limit along T( t )  is even easier to compute, since 

((t, 1) - K )  A Ix" is just the rectangle Wt = [0, t] × IQ. Thus 

1 £ 
~-~(h * H ) ( T ( t ) )  = h ( ( t , t  + l)  - ( x , y ) ) d # ~ ) ) .  

t 

Property (d) implies something about # l - - t h a t  mass moves away from tke 

boundary on repeated convolution. Property (d) revised to 

< + (0,1/2)) 

holds for sufficiently large n. As h is - 1  over most of K1, we deduce that 

h • H ( T ( t ) )  is eventually negative. So h has the desired properties. It follows 

immediately that Gcont(P) does not exist. | 

Now we give a general result in the planar case, even allowing faces that 

are not exposed. 

THEOREM 6.2: Let  K be a planar compact  convex set with interior. Let  h : K ---* 

R be a nonnegative continuous function such that cvx  supp h = K ,  and such that  

i f  F is an edge (i.e., a one-dimensional face) of  K for which h[F is identically 

zero, then the directional derivative (u .  Vh)[F exists  and is not  identically zero, 

where u is a vector exposing F.  Then Gcont(#) exists. I f  additionally, for every 

edge F,  either cvx  supp h[F = F or h[F =_ 0 but  cvx  supp ((u. Vh)]F) = F,  then 

r :  Te( G cont (P ) ) ~ [(  is a homeomorphism.  

Proo~ We observe that all one dimensional faces are facets here and thus are 

exposed; in view of the discussion between Lemma 3.5 and Theorem 3.6, the only 
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problem will be continuity of the Radon-Nikodym derivatives at an extreme but 

not exposed point. To this end, we adapt the argument in the case of an exposed 

point, namely Lemma 3.1. In place of the U~ (later called A~) determined by a 

single exposing vector, u, we obtain a decreasing sequence of open sets determined 

by a suitable family of vectors which "Mmost exposes" the point. 

Let v be an extreme but not exposed point of K. By a suitable affine linear 

transformation, we may assume there is a neighbourhood, V, of v in K that is 

the region under the graph of an increasing function f : [ - 1 ,  1] ~ [0, 1] with the 

following properties: 

• f is concave (as an ironic twist to the definition of convex function versus 

convex set, it is concavity of f that guarantees convexity of the region); 

• f is strictly increasing on [-1,  0], and f ( t )= f (0)  = 1 for t > 0; 

• v is the point (0, 1) = (0, f (0))  and the derivative from the left of f exists 

(since f is increasing) and is zero at 0 (this is precisely what makes v not 

exposed). 

Being concave on a neighbourhood of zero, f is continuous there. Let ui = 

(a~, bi) be outward normal vectors (to be specific, "normal" means with respect 

to the derivatives from the left, which exist almost everywhere) to the points 

v~ = (x~, f(xi)), with ui • vi = 1 where xi is monotone increasing up to zero. We 

claim there exists a null sequence 5~ of positive numbers such t h a t  

{v} = { kC KI l-ui'kSi i s b o u n d e d } .  

It is immediate that whatever 5i are chosen (going to zero), the set on the right is 

contained in the edge containing v; in particular, we do not have to worry about 

points in K outside V. We observe that u~ converges to (0, 1) and ai < 0, bi > 0. 

Select a point w = (e, 1) on the edge, with c :> 0. Then 

1 - u i "  w 1 - ~a~ - bi  e l a ~ l  

1 - u i . v  1 - b ~  1 +  1 - b l  

so it would be sufficient to show (1 -bi)/(-ai) ---* O. The "tangent" at (xi, f(xi)) 
has slope -aJbi. A simple convexity argument (or just draw the diagram) yields 

- - - >  > 0 .  
bi - x l  
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From aix i  + b i f ( x i )  = 1, we deduce 

1 - bi 1 - b i f ( x i )  b J ( x i )  - bi 
- -  _ _  --}- 
-ai  --X i --X i 

{ l - b i f ( x i ) , b i l -  f(xi)  } 
< m a x  - - -  

- x i  - x i  
< m a x  {-ai ,  -a i}  = -ai .  

As ai ~ 0, we can set 5i = 1 - bi and we are done. 

Now we are in position to prove the analogue of Lemma 3.1 for an extreme 

but not exposed point v. If zik is a convergent subsequence of { z i } ,  and xi~ 

belongs to (z~ k - K2) (7 K1, then any limit point of {x~k} can only be v; this 

follows from the almost exposure property just obtained. I t  follows immediately 

that  there exists e > 0 such that  for all sufficiently large i, for all x in zi - K2, 

dist (x - z0) < e. Now the argument of Lemma 3.1 can be adapted directly. 

This yields that  Gcont(#) exists. The rest of the statement can be deduced 

from results in section 4. | 

E x a m p l e  6.3: A planar compact convex set K with an absolutely continuous 

measure # such that  Gcont (it) exists, F is one to one on the interior, but not on 

the boundary; it also demonstrates the sensitivity to small changes of properties 

of F. 

Let K be the convex hull of the unit disk (centred at the origin) and two 

translated copies, say by (2, 0) and (a, 0) where c~ > 4. Begin by assigning 

to each disk its usual Lebesgue measure. The first objection is that  the Radon- 

Nikodym derivative of the sum (with respect to Lebesgue measure on K)  will not 

be continuous; however all of its higher convolution powers will have absolutely 

continuous R-N derivatives. The next objection is that  there is no mass on 

portions of the interior; remedy this by adding a bounded C ~ function that  is 

strictly positive on the interior of K and all of whose derivatives vanish on the 

boundary of K.  

(See Illustration 6.3; K resembles a European hockey* rink;** the lightly 

greyed areas have the only the mass from the smooth function, while the darkly 

* Ice hockey, of course! 
** North American hockey rinks are considerably more flattened at the ends; Eu- 

ropean hockey rinks are only somewhat flattened, which in fact would make this 
example a little easier. 
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greyed areas have additionally Lebesgue measure.) 

Isr. J. Math. 

Illustration 6.3 

Let F denote the top edge; similar remarks apply to the bot tom edge. It  is 

easy to check that  the limiting measure #F exists and is just the discrete measure 

with equal weights at (0, 2), (2, 2), and (a, 2). In order to use Lemma 3.5, we 

would require #F(OF) = 0 which is clearly not the case. However, the proof of 

the latter can be modified to accommodate the situation that  p(n)(O(nF)) -~ O, 
which does hold here. In order to show Gcont(P) exists, it remains to deal with 

the four extreme but not exposed points of K.  There are two remedies: either 

flatten the ends slightly, so all extreme points are exposed (and the resemblance 

to a hockey rink is increased) or deal with the extreme points as in the proof of 

Proposition 5.2. In either case, 3.1-3.3 will finish the argument that  Gcont exists. 

(It should be true that  if Gcont(P/) exists for Pl and #2, then Gcont(~ 1 * #2) exists 

as well; this would considerably simplify the example and the argument.) 

To deal with F, we a t tempt  to apply Theorem 4.4. Only property (e) is in 

doubt; if a is rational, then Gco,t(PF) is an algebra of certain rational functions 

in one variable, and it is very easy to see that  (e) applies directly. However, if a 

is irrational, then Gcont(#F) is just a special case of Example 2.5, and (e) does 

not apply. In fact, in the course of the proof of Theorem 4.4, it is shown (without 

using (e)) that  Gcont(PF) is a quotient of Gcont(#) by an order ideal, any pure 

trace on the quotient lifts to a pure trace on Gcont(tt), and moreover, the two Fs 

are compatible. Since FF is not one to one on the interior of F,  it follows that  F 

itself is not one to one. In particular, F is one to one if and only if (~ is rational, 

which demonstrates the sensitivity to small perturbations. 

When c~ is irrational, in fact each point of the relative interior of F corre- 

sponds to a line of traces on Gcont(#); the only way to draw this would be to have 

fins extending out from each of the two edges, creating the Edsel of irrational 
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hockey rinks! 

Obvious ly  this  example  could be modif ied by fixing the d i s tance  be tween 

the centres  of the  first and  th i rd  disks, and  le t t ing  a be the  d i s tance  from the 

first to  the  second; then  K remains  the  same for all  values of the  pa rame te r ,  so 

we ob ta in  a one p a r a m e t e r  family of measures  on a fixed compac t  convex set 

wi th  the  p r o p e r t y  t ha t  F is a homeomorph i sm  if and only if the  the  p a r a m e t e r  

is ra t ional .  | 
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